Sr.	Quest	ion		
INO.				• · · ·
1.	When	a compressed gas is allowed to expand throus sion temperature, then	ıgh a p	porous plug at a temperature above its
	(A)	A fall in temperature is observed	(B)	A rise in temperature is observed
	(C)	observed	(D)	No change in temperature is noticed
2.	Gas A (A)	A can be liquefied at room temperature by app Critical temperature of B is less than that of A	lying (B)	pressure but gas B cannot. This reflects Critical temperature of B is greater than that of A
	(C)	Critical temperature of both A and B are greater than room temperature	(D)	No conclusion can be drawn on the critical temperature of A and B
3.	Claus	ius-Clapeyron's equation gives the variation	of	
	(A)	Boiling point of liquid with temperature	(B)	Vapour pressure of a liquid with temperature
	(C)	Coefficient of viscosity of a liquid with pressure	(D)	Surface tension of a liquid with temperature
4.	At an	y temperature T, the entropy of a solid substa	nce (S	T) is given by the expression
	(A)	$C_P dT$	(B)	$C_{p/T}$
	(C)	$\int_0^{TC_p dT} / T$	(D)	$(C_p - C_v)/T$
5.	The v	alue of equilibrium constant for an endothern	nic rea	ction
	(A) (C)	Increases with increases of temperature Is independent of temperature	(B) (D)	Decreases with increase of temperature Information not sufficient to draw any conclusion
6.	Whic	h of the following statement is not correct?		
	(A)	Fast reactions have low activation energy	(B)	Activation energy of a reaction depends on the chemical nature of reactants and products
	(C)	A catalyst increases the rate of reaction by decreasing the activation energy of the reaction	(D)	With increase in temperature, the rate of reaction decreases in case of exothermic reactions
7.	Whic	h formula cannot be used to calculate the mol	ar mas	ss of a solute?
	(A)	$\frac{K_b \times W_b \times 10^3}{\Delta T_b \times W_A}$	(B)	$\frac{W_B RT}{\pi V}$
	(C)	$\frac{\Delta T_b \times W_B \times 10^3}{K_b \times W_A}$	(D)	$rac{p_A^o imes W_B imes M_A}{(p_A^o - p) imes W_A}$
8.	The E	EMF of the cell, $Zn Zn^{2+} Ag^+ $ Ag is independent	lent of	
	(A)	The volume of Zn^{2+} and Ag^+ solutions	(B)	The molarity of Zn^{2+} ions in the solution
	(C)	The molarity of Ag^+ ions in the solution	(D)	Temperature

9.	 What happens when electric current is passed thro (A) O² is evolved at cathode (C) pH of the solution gradually decreases 	 ugh aqueous of sodium chloride (B) O² is evolved at anode (D) pH of the solution gradually increases
10.	The dimensions of rate constant for a first order re(A) Time and concentration(C) Concentration only	caction involve(B) Time only(D) Neither time nor concentration
11.	The $t_{1/2}$ of a first order reaction is found to be 2 mi 360 seconds is (A) 12.5 (C) 15	(B) 25 (D) 7.5
12.	The net energy change in a reversible, cyclic proce (A) 3/2 RT (C) Always >0	ess is (B) Zero (D) Always <0
13.	The magnetic quantum number for the last electro (A) 3 (C) 1	n in the sodium atom (atomic number z=11) is (B) 2 (D) 0
14.	The octahedral molecular shape is associated with (A) $sp^{3}d$ (C) $sp^{3}d^{3}$	(B) sp^3d^2 (D) sp^3
15.	Which of the following is the strongest acid(A) Acetic acid(C) Butanoic acid	(B) Propionic acid(D) Chloroacetic acid
16.	An example of natural semi conductor is(A) boron(C) aluminium	(B) silicon(D) phosphorous
17.	The ionic strength of a solution containing 0.02 M (A) 0.03 (C) 0.09	I Na ₂ SO ₄ and 0.01 M MgCl ₂ is (B) 0.06 (D) 0.1
18.	Balmer series consists of lines in the spectral rang(A) 100-180 nm(C) 400-700 nm	e (B) 230-340 nm (D) 900-1100 nm
19.	Aluminium chloride is a/an(A) Lewis acid(C) Bronsted-Lowry acid	(B) Lewis base(D) Arrhenius acid
20.	The pH of 10 ⁻⁸ N HCl is approximately (A) 8 (C) 7	(B) 7.02(D) 6.96
21.	Covalent character of the bond is maximum in the (A) LiCl (C) KCl	case of (B) NaCl (D) CaCl ₂
22.	 This species generally act as Bronsted acid and ba (A) HSO₄⁻ (C) NH₃ 	se (B) Na^2CO_3 (D) OH^-

23. This serves as a differentiating solvent for HCl, H₂SO₄ and HNO₃

- Liquid NH₃ (A) (B) H₂O Liquid CH₃COOH (C) (D) C_6H_6
- 24. Silicon carbide widely used as an abrasive called carborundum belongs to the class of carbides known as
 - (A) Ionic carbides
- **(B)** Interstitial carbides Silicates
- Covalent carbides (D) (C)
- Which of the following statement concerning probability density (Ψ^2) and radial 25. distribution function $(4\pi r^2 \Psi^2)$ for s-orbital of H-like species is correct?
 - (A) Ψ^2 is minimum at nucleus but $4\pi r^2 \Psi^2$ is maximum at nucleus
 - Both Ψ^2 and $4\pi r^2 \Psi^2$ are maximum at (D) nucleus
- (B) Ψ^2 is maximum at nucleus but $4\pi r^2 \Psi^2$ is minimum at nucleus
- Both Ψ^2 and $4\pi r^2 \Psi^2$ are minimum at nucleus
- 26. Which conformer among the following is most unstable (B)
 - (a,e) 1,2 dimethyl cyclohexane (A) (a,a) 1,3 - dimethylcyclohexane (C)

(C)

- (a,e) 1,3 dimethyl cyclohexane
- (D) (a,a) 1,4 dimethylcyclohexane
- 27. Which of the following compounds readily undergoes S_N1 reactions owing to the stability of its cartonium ion
 - (B) (A) - Cl - Cl (C) (D) Cl CI
- 28. Which reagent effects the following conversion?

- (A) m- chloroperbenzoic acid
- **(B)** Acetic anhydride

NaOH/Br₂ (C)

Acetic acid (D)

1. Consider the following photochemical reactions:

$$H_{2} + Cl_{2} \xrightarrow{hv} 2 HCl$$

$$and$$

$$H_{2} + Br_{2} \xrightarrow{hv} 2HBr$$

$$5100\text{\AA}$$

These reactions are the examples of which of the following?

- Reactions of high and low quantum Reactions of low and high quantum (B) yields, respectively yields, respectively
- Reactions of quantum yields equal to (C) one
- Reactions of equal quantum yields (D) but not equal to one
- 30. Which molecule is anti-aromatic among the following: (A) (B) 0

(C)

(A)

31.

(A)

- Acid strength of oxo-acids of halogens is in order HOI >HOBr>HOCl> HOF (A)
- HOCl>HOBr> HOI > HOF (C)

32. Teflon is synthesized by

- Free radical polymerization of tetrafluoro (A) ethylene (C_2F_4)
- Condensation of E-amino caproic acid (C)

(D)

(B)

(D)

- HOF >HOCl>HOBr> HOI **(B)**
- (D) HOI > HOF > HOBr>HOCl
- (B) Condensation of hexane -1, 6- diamine and adipic acid
- (D) Polymerization of Cyano ethylene

Two triplets and one quartet

33. High resolution 'HNMR spectrum of 1,3 – dichloropropane has signals. One triplet and one quartet

- One triplet and one quintet
- One triplet and two doublets (C)
- 34. Which heterocyclic compound is least aromatic among the following? Pyrrole (B)
 - Furan (A)
 - (C) Thiophene (D) Pyridine

29.

35.	Which compound will show the longest wavelength maxima in its UV spectrum?			
	(A)	(B)		
	(C)	(D)		
26	The 21 . Of transition is a transition			
30.	I ne $2+ \rightarrow 0+$ transition is a transition: (A) Electric dipole	(B) Magnetic dipole		
	(C) Magnetic guadrupole	(D) Electric quadrupole		
	(C) Wagnetie quadrupole	(D) Electric quadrupole		
37.	After 72 hours the quantity of a sample of 24 Na	is found to be 2 125% of the original sample		
	After 72 hours, the quantity of a sample of 11 Na 11	is found to be 5.125% of the original sample		
	quantity. Determine the half-life of the sample (in $(A) = 2$	$(\mathbf{P}) = 4.5$		
	$ \begin{array}{c} (A) & 3 \\ (C) & 0 \end{array} $	(B) 4.5 (D) 18		
	(C) 9	(D) 18		
38.	Obtain the threshold money (in May) for the read	$209_{Bi} \left(2_{II} \right) 208_{Bi} \left(5_{Compared} \right) data$		
	Obtain the threshold energy (in Mev) for the reac	$B_{100} = B_{10} = B_{10} (p, 1^H) B_{10} = B_{10} [Some userul data:$		
	$(Masses)p = 938 \text{ Mev}, {}^{209}\text{Bi} = 208.980394 \text{ u};$	208 Bi = 207.979731 u; 2 H=2.014102 u]		
	(A) 6.01842	(B) 6.04743		
	(C) 6.05987	(D) 6.089765		
• •				
39.	From meson theory of nuclear forces, the potentia	al energy of interaction between two nucleons is		
	proportional to $(\Lambda) = a^{r/R}$	(B) $e^{-r/R}$		
	$(A) \qquad C. \xrightarrow{e^{i/H}}$	$-C. \frac{e^{-r/2}}{-r}$		
	(C) $r^{R/r}$	(D) $-\frac{r}{R}/r$		
	$C.\frac{e^{-1}}{2}$	$-C.\frac{-r}{r}$		
	Γ	,		
40.	If the observed total angular momentum of the de	uteron 'l' has a magnitude 1, then based on this		
	data alone, the orbital angular momentum 'l' can	take values:		
	(A) $0,1,2$	(B) $0,2$		
	$(\mathbf{C}) = 0$	(D) 0.1		
41	71 11 238, 1			
	The Uranium series with parent $\frac{0}{92}$ decays by	emission of 8α and 6β particles. The end		
	product has Z & A			
	(A) 82 & 208	(B) 82 & 206 (D) 84 & 206		
	(C) 84 & 208	(D) 84 & 206		
42.	The detector that can measure the energy of gam	na rays is		
	(A) GM counter	(B) Ionization chamber		
	(C) Scintillation detector	(D) Cloud chamber		

43.	The angular momentum and party of $\frac{17}{8}O$ nucleus in the ground state according to the shell			
	model is $(A) = 0^+$	(B) <u>1</u>		
	(C) 3_{+}	(D) $\frac{2}{5}_{+}$		
	2	2		
44.	All baryons are made up of (A) Ouark and an anti-quark combination	(B) 2 quarks combination		
	(C) 3 quark combination	(D) 3 ante-quark combination		
45.	A cyclotron is operated at an oscillator frequence The magnitude of the magnetic field require $x 10^{-27}$ kg is	ecy of 12 MHz and has a dee radius of 53 cm. red to accelerate protons, whose mass is 1.67		
	(A) 0.8 I (C) 1.6 T	(B) $1.0 T$ (D) $2.0 T$		
46.	An oscillator always needs an amplifier with			
	(A) Positive feedback	(B) Negative feedback		
	(C) Both types of feedback	(D) An LC tank circuit		
47.	Compared to a bipolar transistor, the JFET has (A)	(D) Marthanen innet innet innet		
	(A) Greater voltage gain(C) Less input impedance	(D) None of these		
48.	A variable Wien bridge oscillator is to be desig 100Hz to 1KHz. the capacitors used in the circu be used in the circuit?	and to produce an output that can be adjusted from uit are 0.01 μ F each. What value of resistance is to		
	(A) 15.9 K to 159 K	(B) 159 K		
	(C) 15.9 K	(D) Any value of R		
49.	The feedback signal in a(n) oscillator is LC circuit.	s derived from the capacitive voltage divider in the		
	(A) Wein bridge	(B) Armstrong		
	(C) Colpitts	(D) Hartley		
50.	A bridge rectifier with a capacitor input filter has transformer has a turns ratio of 8: 1, what is the (A) $30 V_{rms}$	as an input voltage of 240 $V_{rms.}$. If the step-down e output voltage? (ignore diode drops) (B) 42 V		
	(C) 60 V	(D) 84 V		
51.	The Common – Collector configuration has a _ impedance.	input impedance and a output		
	(A) Low, high	(B) High, low		
	(C) Low, low	(D) Hign, hign		

- 52. The PIV across a non-conducting diode in a Full wave rectifier circuit equals approximately
 - (A) Peak value of the secondary voltage
 - (C) Half the peak value of the secondary voltage
- 53. As compared to a silicon rectifier diode an LED has a
 - (A) Lower forward voltage and lower breakdown voltage
 - (C) Higher forward voltage and lower breakdown voltage

- (B) Twice the peak value of the secondary voltage
- (D) Four times the peak value of the secondary voltage
- (B) Lower forward voltage and higher breakdown voltage
- (D) Higher forward voltage and higher breakdown voltage
- 54. The two ends of the load line for the following circuit are (in V, mA)
- 15 V 5K 1M (A) (15, 0) & (0, 3)(B) (0, 0) & (15, 0)(3, 0) & (0, 15)(D) (0, 3) & (15, 3)(C) 55. If the load resistance in a zener regulator circuit decreases, the zener current (A) Decreases **(B)** Increases (C) Remains the same (D) Equals the load current 56. Miller indices of a plane parallel to x and z - axes are (A) (100)(B) (010)(C) (001)(D) (101) 57. The average energy of an atomic oscillator is given by (A) hv **(B)** hv $\rho hv/kt_{-1}$ $\frac{hv}{(e^{-hv/kt}-1)^2}$ $\frac{hv}{e^{-hv/kt}-1}$ (C) (D) 58. For a non-dispersive medium (A) $\omega = vk$ (B) $\omega = vk^2$ $\omega = vk^3$ (D) $\omega = \nu k^n \ (n \neq 1)$ (C)

59. If $a = b \neq c$ and $\alpha = \beta = y = 90^{\circ}$, the crystal system is				tem is
	(Å)	triclinic	(B)	tetragonal
	(C)	hexagonal	(D)	monoclinic
(0)	р			
60.	Brava (Λ)	is lattice for diamond structure is	(D)	haa
	(\mathbf{A})	sc	(D)	bee
	(C)		(D)	hep
61.	The d	istance between the adjacent atomic planes ir	n CaCO	D_3 is 0.3 nm. The smallest angle of
	Bragg	scattering for 0.03 nm X- ray is		- -
	(A)	00	(B)	2.9°
	(C)	5.8°	(D)	90°
62	Dhone	on is the quantum of		
02.	(A)	electromagnetic wave	(B)	elastic wave
	(C)	gravitational wave	(D)	deBroglie wave
		C		6
63.	The re	eciprocal lattice to direct simple cubic lattice	is	
	(A)	simple cubic	(B)	Body centered cubic
	(C)	face centered cubic	(D)	base centered cubic
64	The F	ermi energy of a metal is 1 4eV, the Fermi te	mnera	ture of the metal is approximately
01.	(A)	1.6×10^3 K	(B)	$1.6 \times 10^4 \text{ K}$
	(C)	$1.6 \times 10^5 \mathrm{K}$	(D)	$1.6 \times 10^{6} \mathrm{K}$
			. /	
65.	A sup	erconductor is a material		
	(A)	diamagnetic	(B)	paramagnetic
	(C)	ferromagnetic	(D)	ferrimagnetic
66	The v	alues of a for which $\{(1 \ a \ 1) \ (a \ 1 \ 1) \ (1 \ 1 \ a)\}$	$n R^3 a$	re linearly independent in R ³ are.
00.	(A)	0.1	(B)	12
	(C)	1,2	(D)	all values except 1 and -2
				-
67.	Whic	h of below are true regarding solution of follo	wing	linear system of equations
		2x-y+z=2,		
		x+2y-z=3		
	(A)	3X+Y+2Z=-1	(P)	Unique solution
	(\mathbf{A})	Infinite solutions	(\mathbf{D})	x=0 $y=0$ $z=0$
	(0)	initiate solutions	(D)	x 0, y 0, 2 0
68.	Nume	erical Derivative of f (0.4) using Central Diffe	erence	formula from below data:
	(0.3,7	.38910),(0.4,7.4633),(0.5,7.5383),(0.6,7.614)	l),(0.7	,7.6906) equals
	(A)	0	(R)	371
	(C)	746	(D)	None of above
	(-)		()	

69. The differential equation (A x + B y) dx + (C x + D y) dy = 0 is exact, if and only if (A) A = C (B) A = D(C) B = C (D) B = D

70. Which one of the following is the integrating factor for the linear differential equation $\frac{dy}{dx} + P(x)y = Q(x) :$

(A)
$$P(x) e^{\int x}$$
 (B) $Q(x)e^{\int x}$

(C)
$$e^{\int P(x) dx}$$
 (D) $e^{\int Q(x) dx}$

71. Which of the following statements is NOT equivalent to the statement, "There exists either a computer scientist or a mathematician who knows both discrete math and Bioscience."

- (A) There exists a person who is a computer (B) scientist and who knows both discrete math and Bioscience or there exists a person who is a mathematician and who knows both discrete math and Bioscience.
 - 3) There exists a person who is a computer scientist or there exists a person who is a mathematician who knows discrete math or who knows Bioscience.
- (C) There exists a person who is a computer (D) scientist and who knows both discrete math and Bioscience or there exists a mathematician who knows both discrete math and Bioscience.
- D) There exists a computer scientist who knows both discrete math and Bioscience or there exists a person who is a mathematician who knows both discrete math and Bioscience.
- 72. The values of k for which $f(x)=(1-k)k^x$ can serve as probability distribution of a random variable which takes countable infinite values 0,1,2,3...

(B) $0 \le k \le 1$

(A) k>1

(C)

- k<0 (D) k=1
- 73. A teacher gives a 20 point test to 10 students. The marks are 18, 15, 12, 6, 8, 2, 3, 5, 20, 10. Find the percentile rank of a score of 12.

(A)	65%	(B)	45%
(C)	68%	(D)	70%

 74.
 Mean, Median and standard deviation for data set 10, 60, 50, 30, 40, 20 are given by

 (A)
 35,35,17

 (B)
 34,34,17.1

 (C)
 30,34,19

 (D)
 35,35,17.1

75. If a student randomly guesses 5 multiple choice questions each having 5 choices, the probability that student gets exactly 3 right answers is given by

(A)	0.04	(B)	0.05
(C)	0.01	(D)	0.02

76.	A rare but serious disease found in 0.01% of a certain population. A test has been developed that will become +ve for 98% of those who have the disease and be +ve only for 3% of those who don't have the disease. Probability that a person tested as +ve does not have the disease is given by				
	(A)	0.997	(B)	0.917	
	(C)	0.003	(D)	0.100	
77.	If A &	B are independent, then following are true			
	(A)	A) A & B' are independent		A' & B are independent.	
	(C)	A' & B' are independent.	(D)	All of above are true	
78.	Rank	of the matrix $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$ is :			
	(A)	2	(B)	1	
	(C)	3	(D)	0	
79	Classi	fy the following ordinary differential equation	n [.] e ^x dy	$y/dx+3y=x^2y$	
15.	(A)	Separable and not linear	(B)	Linear and not separable	
	(C)	Both separable and linear	(D)	Neither separable nor linear	
80.	General solution of 2nd ordinary differential eqaution $4y^{(2)}+9y=0$ is given by (where C1 and C2 are arbitrary constants):				
	(A)	$y = C_1 e^t + C_2 e^{-t}$	(B)	$y=C_1 e^{2t}+C_2 e^{-t}$	
	(C)	$y = C_1 \cos(t) + C_2 \sin(t)$	(D)	$y = C_1 \cos(3t/2) + C_2 \sin(3t/2)$	
81.	Consider 2^{nd} order ordinary differential equation $y^{(2)}+2y^{(1)}-8y=0$. Suppose derivatives are taken with respect to variable t. The values of r for which the given differential equation has the solution of the form $y=e^{rt}$ are:				

~ ~ ~ ~ ~ ~ ~ ~		J	•		
(A)	2, -4			(B)	2, 4
(C)	-2, 4			(D)	-2, -4

The slope of the tangent line to the graph of f at x = 4, given that 82. $f(x) = -x^2 + 4*sqrt(x)$ is (B) -10 (D) -7 (A) -8 (C) -9

The value of x where the function $f(x) = x^3 - 9x^2 + 24x + 4$ has a local maximum is 83.

(A)	2	(B)	1
(C)	-2	(D)	-1

The values of A and B so that function f defined by $f(x) = 2x^2$ for $x \le 2$ and f(x) = A x + B for x 84. > 2 is differentiable at x = 2 are

(A) 8,8 (B) 8, -8 (D) -8,8 (C) -8, -8

85.	5. The approximation of sin(1) obtained by Taylor's series approximation upto 5 th degree al for sin(x) is given by:				
	(A) (C)	$\begin{array}{r} 1 - \frac{1}{2} + \frac{1}{24} \\ 1 - \frac{1}{6} + \frac{1}{120} \end{array}$	(B) (D)	$ \frac{1 + \frac{1}{2} + \frac{1}{24}}{1 + \frac{1}{2} + \frac{1}{120}} $	
86.	The M	factaurian series for $1/(1-x)$ is $1+x+x^2+x^3+$			
	(A)	$x+x^2+x^3+\dots$	(B)	$x^2 + x^4 + x^6 + \dots$	
	(C)	$x^3 + x^6 + x^9 + \dots$	(D)	$1 + x^2 + x^4 + x^6 + \dots$	
87.	If Arit data	hmetic mean of a set of n data points is 106.6	5 wher	e n=8, then Harmonic mean of given	
	(A)	0.8502	(B)	0.8510	
	(C)	0.8528	(D)	0.0850	
88.	Relation	onship among the averages			
	(A)	HM 2GM 2AM	(B)	AM2GM2HM	
	(C)	GM ≤HM ≤AM	(D)	AIM ≥HIM ≤GIM	
89.	A race car is travelling on a straight track at a velocity of 80 meters per second when the brakes are applied at time t=0 seconds. From time t=0 to the moment the race car stops, the acceleration of the race car is given by $a(t) = -6t^2 - t$ meters per second per second. During this time period, how far does the race car travel?				
	(A)	188.229m	(B)	198.766m	
	(C)	260.042m	(D)	267.089m	
90.	A fund follow that f ⁽¹	ction fis continuous on the closed interval [2, ring additional conditions guarantees that the $(c)=0$?	,5] wit re is a	h f(2)=17 and f(5)=17. Which of the number cin the open interval $(2,5)$ such	
	(A)	No additional conditions are necessary.	(B)	fhas a relative extrema on the open interval (2,5)	
	(C)	fis differentiable on the open interval (2,5)	(D)	finite integral of f between 2 and 5 exists.	
91.	An ice sculpture in the form of a sphere melts in such a way that it maintains its spherical shape. The volume of the sphere is decreasing at a constant rate of 2π cubic meters per hour. At what rate, in square meters per hour, is the surface area of the sphere decreasing at the moment when the radius is 5 meters?				
	(A)	$4 \pi/5$	(B)	40π	
	(C)	80 <i>π</i>	(D)	100π	
92.	Seque	nce defined by $a_n = \ln(2n^3 + 2) - \ln(5n^3 + 2n^2 + 2n^3)$	4) conv	verges to	
	(A)	0	(B)	$\ln(2/5)$	
	(C)	$-\ln(2/5)$	(D)	2/5	
93.	The su	Im of series $\sum_{n=2}^{\infty} \frac{6}{n(n+3)}$ is given by			
	(A)	0	(B)	13/2	
	(C)	5/3	(D)	13/6	

94.	The at (A)	rea of region between the graph of $y=x^2$ and $2/3$	y=-x (B)	from x=0 to x=2? 8/3
	(C)	4	(D)	14/3
95.	An eq	uation of line tangent to graph of $y=x+\cos(x)$) at the	point (0,1) is
	(A)	y=2x+1	(B)	y=x+1
	(C)	y=x	(D)	y=x-1
96.	Natio	onal Science Day is celebrated on:		
	(A)	5 June	(B)	21June
	č	28 February	m	16 October
	(0)	201 contain y	(D)	
97.	Whic	h among the following monsoon is mainl	y resp	onsible for rains in India?
	(A)	South-East	(B)	North-West
	(C)	South-West	(D)	North-East
98.	Whic	h gas is generally used in cold stores?		
	(A)	Ethylene	(B)	Oxygen
	(Γ)	Methane	(D)	Acetelene
	(C)	Wethane	(D)	Accience
99.	Grow	ving of coconut, black pepper and ginger s	simult	aneously in the same field is an
	(A)	Relay cronning	(\mathbf{R})	Intercronning
	(\mathbf{C})	Multiple gropping	(D)	Multistoriad aronning
	(\mathbf{C})	mumple cropping	(D)	Munistoried_cropping

- 100. In pulses, limiting amino acids is: (A) Methionine

 - (C) Lysine

- (B) Valine
- (D) Cystein