| Sr. | Question |
|-----|----------|
| No. |          |

While walking on smooth surface one should take small steps to ensure 1. Large friction Small friction (A) (B) Larger normal force (C) Smaller normal force (D) 2. What happens to a vehicle travelling in an unbanked curved path if the friction between the road and tires suddenly disappears Moves along tangent Moves radially in (A) (B) (C) Moves radially out Moves along the curve (D) A ball of mass 0.2 kg strikes an obstacle and moves at  $60^{\circ}$  to its initial direction. If its speed 3. changes from 20m/s to 10m/s the magnitude of impulse received by the ball is -----Ns (A)  $2\sqrt{7}$ (B)  $2\sqrt{3}$ (D) (C)  $2\sqrt{5}$  $3\sqrt{2}$ A spacecraft of mass 2000kg moving with 600 m/s suddenly explodes into two pieces. One piece 4. of mass 500 kg is stationary. The velocity of other part in m/s is (A) 600 (B) 800 1500 1000 (C) (D) 5. 16 kg 140 N 8 kg The force on 16 kg is.....? 4 kg 140N (A) (B) 120N 100N (C) 80N (D) A man of mass 40 kg is at rest between the walls. If coeff. of friction between man and wall is 6. 0.8, find the normal reaction exerted by wall on man (take g = 10 m/s/s)



7.

| 8.  | Gravitational force between two bodies is F. The space around the mass is now filled with a liquid of specific gravity 3. The gravitational force will be |                                                                                                                          |                               |                                                                                                      |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------|--|
|     | (A)                                                                                                                                                       | F/9                                                                                                                      | (B)                           | 3F                                                                                                   |  |
|     | (C)                                                                                                                                                       | F                                                                                                                        | (D)                           | F/3                                                                                                  |  |
| 9.  | A man weighs 75 kg on the surface of earth. His weight on the geostationary satellite is                                                                  |                                                                                                                          |                               |                                                                                                      |  |
|     | $(\mathbf{A})$                                                                                                                                            | infinity                                                                                                                 | (B)                           | 150kg                                                                                                |  |
|     | (C)                                                                                                                                                       | 2010                                                                                                                     | (D)                           | 75/2 Kg                                                                                              |  |
| 10. | g at a $(\Lambda)$                                                                                                                                        | depth of 1600 km inside the earth in m/s/s is                                                                            | (D)                           | 7.25                                                                                                 |  |
|     | $(\mathbf{C})$                                                                                                                                            | 8.65                                                                                                                     | (D)                           | 4.35                                                                                                 |  |
| 11. | A bloc<br>embec<br>(A)<br>(C)                                                                                                                             | ck of mass 19 M is suspended by a string of l<br>ded in it. If the block completes the vertical<br>140<br>$20\sqrt{9.8}$ | ength<br>circle<br>(B)<br>(D) | 1m. A bullet of mass M hits it and gets<br>the velocity of bullet in m/s is<br>$20\sqrt{19.6}$<br>20 |  |
| 12. | A rub<br>impac                                                                                                                                            | ber ball falls from a height of 4m and rebound                                                                           | ds to 1                       | .5m. The % loss of energy during the                                                                 |  |
|     | (A)                                                                                                                                                       | 20                                                                                                                       | (B)                           | 62.5                                                                                                 |  |
|     | (C)                                                                                                                                                       | 23                                                                                                                       | (D)                           | 60                                                                                                   |  |
| 13. | 25 kg<br>requir                                                                                                                                           | of sand is deposited each second on a convey<br>ed to maintain the belt in motion is                                     | or bel                        | t moving at 10m/s. The extra power                                                                   |  |
|     | (A)                                                                                                                                                       | 2600W<br>225W                                                                                                            | (B)                           | 250W<br>2500W                                                                                        |  |
|     | (C)                                                                                                                                                       | 525 W                                                                                                                    | (D)                           | 2500 W                                                                                               |  |
| 14. | A unit                                                                                                                                                    | form rod of mass M and length L standing ve<br>ag at the bottom. The moment of inertia will                              | rticall <sub></sub>           | y on a horizontal floor falls without                                                                |  |
|     | (A)                                                                                                                                                       | $ML^2/3$                                                                                                                 | (B)                           | $ML^2/6$                                                                                             |  |
|     | (C)                                                                                                                                                       | $ML^2/9$                                                                                                                 | (D)                           | $ML^{2}/12$                                                                                          |  |
| 15. | If the                                                                                                                                                    | velocity of C.M of a rolling body is V, then v                                                                           | velocit                       | y of highest point in the body will be                                                               |  |
|     | (A)                                                                                                                                                       | $\sqrt{2V}$                                                                                                              | (B)                           | $V_{V/2}$                                                                                            |  |
|     | (C)                                                                                                                                                       | 2 V                                                                                                                      | (D)                           | V/VZ                                                                                                 |  |
| 16. | The an of the                                                                                                                                             | ngular momentum of two rotating bodies are<br>ir rotational K.E is                                                       | equal.                        | If the ratio of their M.I is 1:4, the ratio                                                          |  |
|     | (A) $(C)$                                                                                                                                                 | 1:2                                                                                                                      | (В)<br>(D)                    | 2.1<br>4·1                                                                                           |  |
| 17  | The le                                                                                                                                                    | and a function in a tank is fun. A hala 1 am <sup>2</sup> is                                                             |                               | at the bettern. The rate of lashess in $m^3$                                                         |  |
| 17. | /s is (t                                                                                                                                                  | ake $g = 10 \text{ m/s/s}$                                                                                               | made                          | at the bottom. The rate of leakage in m                                                              |  |
|     | (A)                                                                                                                                                       | 10-3                                                                                                                     | (B)                           | 10-4                                                                                                 |  |
|     | (C)                                                                                                                                                       | 10                                                                                                                       | (D)                           | 10-2                                                                                                 |  |
| 18. | Two b $3/5^{\text{th}}$                                                                                                                                   | blocks A and B float in water. A floats with 1                                                                           | /4 <sup>th</sup> of           | its volume immersed and B floats with                                                                |  |
|     | (A)                                                                                                                                                       | 5:12                                                                                                                     | (B)                           | 12:5                                                                                                 |  |
|     | (C)                                                                                                                                                       | 3:20                                                                                                                     | (D)                           | 20:3                                                                                                 |  |

| 19. | The terminal velocity of a spherical ball of lead of radius R is Vwhile falling through a viscous liquid varies with R such that |                                                                                                                                   |                 |                                                                                                |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------|--|--|
|     | (A)                                                                                                                              | V/R is constant                                                                                                                   | (B)             | VR is constant                                                                                 |  |  |
|     | (C)                                                                                                                              | V is constant                                                                                                                     | (D)             | $V/R^2$ is constant                                                                            |  |  |
| 20. | A hyd<br>other                                                                                                                   | raulic press uses a piston of 100 cm <sup>2</sup> to exert piston that supports a mass of 2000 kg is (tak                         | a force $g = 1$ | e of $10^7$ dynes on water. The area of the $10$ m/s/s)                                        |  |  |
|     | (A)                                                                                                                              | $100 \text{cm}^2$                                                                                                                 | (B)             | $10^9 \text{ cm}^2$                                                                            |  |  |
|     | (C)                                                                                                                              | $2 \times 10^4 \text{ cm}^2$                                                                                                      | (D)             | $2 \times 10^{10} \text{ cm}^2$                                                                |  |  |
| 21. | When<br>throug<br>The ve                                                                                                         | kerosene and coconut oil of coeff. of viscosi<br>gh the same pipe, under same pressure differe<br>olume of kerosene that flows is | ty 0.00         | 02 and $0.0154$ Ns/m <sup>2</sup> are followed<br>and same time collects 1 lit of coconut oil. |  |  |
|     | (A)                                                                                                                              | 5.5 lit                                                                                                                           | (B)             | 6.6 lit                                                                                        |  |  |
|     | (C)                                                                                                                              | 7.7 lit                                                                                                                           | (D)             | 8.8 lit                                                                                        |  |  |
| 22. | There                                                                                                                            | is a circular hole in metal plate. When the pl                                                                                    | ate is ł        | neated the radius of the hole becomes                                                          |  |  |
|     | (A)                                                                                                                              | increased                                                                                                                         | (B)             | decreased                                                                                      |  |  |
|     | (C)                                                                                                                              | unchanged                                                                                                                         | (D)             | depends on metal                                                                               |  |  |
| 23. | Specit<br>given                                                                                                                  | fic heat of a substance depends on 1. Nature of the substance                                                                     | of subs         | stance. 2. Mass of substance. 3. Heat                                                          |  |  |
|     | (A)                                                                                                                              | Only one is correct                                                                                                               | (B)             | Both 1 and 2 are correct                                                                       |  |  |
|     | (C)                                                                                                                              | All are correct                                                                                                                   | (D)             | Only 1 and 3 are correct                                                                       |  |  |
| 24. | In a g                                                                                                                           | ive process dW=0, dq is <0 then for a gas                                                                                         |                 |                                                                                                |  |  |
|     | (A)                                                                                                                              | Temperature increases                                                                                                             | (B)             | Volume decreases                                                                               |  |  |
|     | (C)                                                                                                                              | Pressure increases                                                                                                                | (D)             | Pressure decreases                                                                             |  |  |
| 25. | The e                                                                                                                            | fficiency of carnot engine depends on                                                                                             |                 |                                                                                                |  |  |
|     | (A)                                                                                                                              | Working substance                                                                                                                 | (B)             | Sink temperature                                                                               |  |  |
|     | (C)                                                                                                                              | Source temperature                                                                                                                | (D)             | Both B and C                                                                                   |  |  |
| 26. | A 200<br>with e                                                                                                                  | turn coil of self inductance 30 mH carries a each turn of coil.                                                                   | curren          | t of 5 mA. Find the magnetic flux linked                                                       |  |  |
|     | (A)                                                                                                                              | $7.5 \times 10^{-7} \text{Wb}$                                                                                                    | (B)             | 1.6 x 10 <sup>-7</sup> Wb                                                                      |  |  |
|     | (C)                                                                                                                              | $3 \ge 10^{-7} \text{Wb}$                                                                                                         | (D)             | 1.5 x 10 <sup>-7</sup> Wb                                                                      |  |  |
| 27. | The ir                                                                                                                           | stantaneous value of current in an AC circuit                                                                                     | t is I =        | 2 sin (100 $\pi$ t + $\pi/3$ ) A. At what first                                                |  |  |
|     | (A)                                                                                                                              | 1/100 s                                                                                                                           | (B)             | 1/200 s                                                                                        |  |  |
|     | (C)                                                                                                                              | 1/500 s                                                                                                                           | (D)             | 1 s                                                                                            |  |  |
|     |                                                                                                                                  |                                                                                                                                   |                 |                                                                                                |  |  |

28. What in electric system represents force in mechanical system ?

| (A) | L   | - | (B) | Ι |
|-----|-----|---|-----|---|
| (C) | 1/C |   | (D) | q |

A capacitor of 1 μF is charged with 0.01C of electricity. How much energy is stored in it?
(A) 30 J
(B) 40 J
(C) 50 J
(D) 60 J

30.An electromagnetic wave is travelling in vacuum with a speed of  $3 \ge 10^8$  m/s. Find the velocity in<br/>a medium having relative electric and magnetic permeability 2 and 1, respectively.(A)  $3/\sqrt{2} \ge 10^8$  m/s(B)  $1.5 \ge 10^8$  m/s(C)  $2 \ge 10^8$  m/s(D) No change

31. Trace the path of ray of light passing through a glass prism as shown in the figure. If the refractive index of glass is  $\sqrt{3}$ , find out the value of angle of emergence from prism.



32. Light wave from two coherent sources of intensities in ratio 64:1 produces interference. Calculate the ration of maximum and minima of the interference pattern.

| (A) | 8:1 | (B) | 64:1  |
|-----|-----|-----|-------|
| (C) | 9:7 | (D) | 81:49 |

33. In young's experiment, the width of the fringes obtained with light of wavelength 6000 A° is 2 mm. What will be the fringe width, if the entire apparatus is immersed in a liquid of refractive index 1.33?

| (A) | 1 mm | (B) | 1.5 mm |
|-----|------|-----|--------|
| (C) | 2 mm | (D) | 2.5 mm |

34. Unpolarised light is incident on plane glass surface. What should be the angle of incidence in degrees, so that the reflected and refracted rays are perpendicular to each other?

| (A) | 37 | (B) | 47 |
|-----|----|-----|----|
| (C) | 57 | (D) | 67 |

35. Determine the de-Broglie wavelength associated with an electron, accelerated through a potential difference of 100 V.

| (A) | 1.227A° | (B) | 12.27A°            |
|-----|---------|-----|--------------------|
| (C) | 122.7A° | (D) | 1227A <sup>o</sup> |

36. A particle with rest mass m<sub>0</sub> is moving with velocity c. What is the de-Broglie wavelength associated with it?

| (A) | infinity   | (B) | zero  |
|-----|------------|-----|-------|
| (C) | radio wave | (D) | X ray |

- Which among the following series gives visible light? 37.
  - Lyman (B) Balmer (A)
  - (C) Bracket

None of these (D)

38. Identify the logic operation performed by this circuit



The number of silicon atoms per m<sup>3</sup> is  $5 \ge 10^{28}$ . This is doped simultaneously with  $5 \ge 10^{22}$  atoms per m<sup>3</sup> of arsenic and  $5 \ge 10^{20}$  atoms per m<sup>3</sup> of indium. Calculate the number of holes, given that 39.  $n = 1.5 \times 10^{16} \text{ m}^{-3}$ .

| (A) | $4.54 \ge 10^9 \text{m}^{-3}$   | (B) | $4.95 \times 10^{22} \text{m}^{-3}$ |
|-----|---------------------------------|-----|-------------------------------------|
| (C) | $1.5 \ge 10^{16} \text{m}^{-3}$ | (D) | $5 \ge 10^{28} \text{m}^{-3}$       |

Two charges  $+5\mu C$  and  $-5\mu C$  are placed 5 mm apart. Determine E at a point 10 cm from centre 40. on the positive charge side along the axial line.

| (A) | 4.5 x 10 <sup>5</sup> N/C  | (B) | $4.5 \times 10^{5} NC$    |
|-----|----------------------------|-----|---------------------------|
| (C) | 4.5 x 10 <sup>-5</sup> N/C | (D) | 4.5 x 10 <sup>-5</sup> NC |

- If the Gaussian surface is so chosen that there are some charges inside and some outside than the 41. electric field is due to
  - (A) Only inside charges (B)
  - All the charges (C)
- Only outside charges
- (D) Cannot determine

42. The following is a diagram showing the variation of E with r from centre of uniformly charge spherical shell of radius R



43. Net capacitance of 3 identical capacitor in series is 1  $\mu$ *F*. What is the net capacitance in  $\mu$ *F* if connected in parallel?

| (A) | 3 | (B) | 6  |
|-----|---|-----|----|
| (C) | 9 | (D) | 12 |

44. An inductor of 5H carries a steady current of 2A. In what time if the current is made zero can a 40V self induced emf be produced in the inductor.

| (A) | 2s   | (B) | 1s    |
|-----|------|-----|-------|
| (C) | 0.5s | (D) | 0.25s |

45. A cell of emf E and internal resistance r gives 0.5A with R=12 ohms and 0.25 with R = 25 ohms. Its internal resistance in ohms will be

| (A) | 0.5 | (B) | 1 |
|-----|-----|-----|---|
| (C) | 2   | (D) | 3 |

46.



6 PCA A

| 47. | Two identical circular loops P and Q of radius r are placed in parallel planes with same axis at a distance of 2r. Find the midpoint of the axis between them if same current I flows through both loops. |                                                                                                                                                                         |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     | (A) $\mu_0 I/2^{3/2} r$<br>(C) $\mu_0 I/4\pi r$                                                                                                                                                           | (B) $\mu_0 2 I/2^{3/2} r$<br>(D) Cannot be determined                                                                                                                   |  |  |  |
| 48. | A block of mass 4 kg is kept on a rough horizont 0.8. If a force of 19 N is applied on the block par between the block and floor is:                                                                      | al surface. The coefficient of static friction is allel to the floor, then the force of friction                                                                        |  |  |  |
|     | (A) 19N<br>(C) 16N                                                                                                                                                                                        | (B) 18 N<br>(D) 9.8N                                                                                                                                                    |  |  |  |
| 49. | Current in a circuit falls steadily from 2A to 0A i<br>(A) 1H<br>(C) 3H                                                                                                                                   | <ul> <li>n 10 ms. Calculate L if emf induced is 200V.</li> <li>(B) 2H</li> <li>(D) 4H</li> </ul>                                                                        |  |  |  |
| 50. | Self inductance of the air core inductor increases<br>core. What is the relative permeability of the core<br>(A) 500<br>(C) 900                                                                           | from 0.01 mH to 10 mH on introducing an iron<br>e used?<br>(B) 800<br>(D) 1000                                                                                          |  |  |  |
| 51. | Among the following, the most stable complex is<br>(A) $[Fe (H_2O)_6]^{3+}$<br>(C) $[Fe (C_2O_4)_3]^{3-}$                                                                                                 | (B) $[Fe (NH_3)_6]^{3+}$<br>(D) $[Fe (Cl)_6]^{3-}$                                                                                                                      |  |  |  |
| 52. | Which is the correct coordination number (C.N)<br>metal atom in $[Co(NH_3)_2(H_2O)_2Cl_2]^+$ ?<br>(A) C.N=3, O.N=+1<br>(C) C.N=6, O.N=+1                                                                  | <ul> <li>(B) C.N=4, O.N=+2</li> <li>(D) C.N=6, O.N=+3</li> </ul>                                                                                                        |  |  |  |
| 53. | In a solid, oxide ions are arranged in ccp, cations<br>cation B occupy one third of the octahedral voids<br>(A) ABO <sub>3</sub><br>(C) AB <sub>3</sub> O                                                 | A occupy one sixth of the tetrahedral voids and<br>a. The formula of the solid is:<br>(B) A <sub>3</sub> BO<br>(D) A <sub>3</sub> B <sub>3</sub> O <sub>3</sub>         |  |  |  |
| 54. | On mixing acetone to methanol some of the hydr<br>Which of the following statements is correct abo                                                                                                        | ogen bonds between methanol molecules break.<br>ut the above process?                                                                                                   |  |  |  |
|     | <ul> <li>(A) At specific composition methanol acetone<br/>mixture will form minimum boiling<br/>azeotrope and show positive deviation<br/>from Raoult's law</li> </ul>                                    | (B) At specific composition methanol<br>acetone mixture will form maximum<br>boiling azeotrope and show positive<br>deviation from Raoult's law                         |  |  |  |
|     | (C) At specific composition methanole<br>acetone mixture will form minimum<br>boiling azeotrope and show negative<br>deviation from Raoult's law                                                          | <ul> <li>(D) At specific composition methanole<br/>acetone mixture will form maximum<br/>boiling azeotrope and show negative<br/>deviation from Raoult's law</li> </ul> |  |  |  |
| 55. | $K_{\rm H}$ value for argon, carbon dioxide, formaldehyd and 0.413, respectively. The correct arrangement solubility is:                                                                                  | e and methane gases are 40.39, 1.67, 1.83 X 10 <sup>-5</sup> of these gases in the order of their increasing                                                            |  |  |  |
|     | (A) formaldehyde <methane<carbon<br>dioxide<argon< td=""><td>(B) formaldehyde&lt; carbon dioxide<br/><methane<argon< td=""></methane<argon<></td></argon<></methane<carbon<br>                            | (B) formaldehyde< carbon dioxide<br><methane<argon< td=""></methane<argon<>                                                                                             |  |  |  |
|     | (C) argon <carbon dioxide<<br="">methane<formaldehyde< td=""><td>(D) argon <methane <carbon="" dioxide<br=""><formaldehyde< td=""></formaldehyde<></methane></td></formaldehyde<></carbon>                | (D) argon <methane <carbon="" dioxide<br=""><formaldehyde< td=""></formaldehyde<></methane>                                                                             |  |  |  |

| 56. | The number of faradays of electricity required for electrolytic conversion of the mole of nitrobenzene to aniline is: |                                                                                       |   |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---|--|--|
|     | (A) 3F                                                                                                                | (B) 4F                                                                                |   |  |  |
|     | $(C) \qquad 6F$                                                                                                       | (D) 5F                                                                                |   |  |  |
|     |                                                                                                                       |                                                                                       |   |  |  |
| 57. | The positive value of the standard electrode poter                                                                    | ntial of $Ag^+/Ag$ indicates that:                                                    |   |  |  |
|     | (A) This redox couple is a stronger reducing                                                                          | (B) This redox couple is a stronger                                                   |   |  |  |
|     | agent than $H^+/H_2$ couple                                                                                           | oxidizing agent than $H^+/H_2$ couple                                                 |   |  |  |
|     | (C) Ag can displace $H_2$ from acid                                                                                   | (D) Ag can displace $H_2$ from base                                                   |   |  |  |
| 58  | Milk is refrigerated in order to slow the rate of de                                                                  | ecomposition by bacterial action. The decrease in                                     | n |  |  |
| 20. | reaction rate is due to:                                                                                              |                                                                                       | • |  |  |
|     | (A) A decrease in surface area                                                                                        | (B) A decrease in $\triangle$ H for the reaction                                      |   |  |  |
|     | (C) A decrease in the fraction of particles                                                                           | (D) The introduction of an alternative                                                |   |  |  |
|     | possessing sufficient energy                                                                                          | pathway with greater activation                                                       |   |  |  |
|     |                                                                                                                       | energy.                                                                               |   |  |  |
| 59. | Which of the following statements is not correct?                                                                     | 2                                                                                     |   |  |  |
|     | (A) The rate of a reaction decreases with                                                                             | (B) The instantaneous rate a reaction is                                              |   |  |  |
|     | passage of time as concentration of                                                                                   | same at any time during the reaction                                                  |   |  |  |
|     | reactants decrease $(C)$ For a zero order reaction the                                                                | (D) The rate of a reaction decreases with                                             |   |  |  |
|     | (C) For a zero order reaction the<br>concentration of reactants remains                                               | (D) The face of a reaction decreases with<br>increase in concentration of reactant (s | ) |  |  |
|     | changed with passage of time                                                                                          | increase in concentration of reactant (s                                              | , |  |  |
| 60. | Which of the following gases shows the lowest a                                                                       | dsorption per gram of charcoal? The critical                                          |   |  |  |
|     | temperatures are given in parenthesis:                                                                                |                                                                                       |   |  |  |
|     | (A) $H_2(33K)$                                                                                                        | (B) $CH_4(190K)$                                                                      |   |  |  |
|     | (C) $SO_2(630K)$                                                                                                      | (D) $CO_2(304K)$                                                                      |   |  |  |
| 61  | Froundlich advantion isotherm is given by the ev                                                                      | $w$ procession $w/m = kn^{1/n}$ W/bish of the following                               |   |  |  |
| 01. | statements are false?                                                                                                 | cpression x/m-kp : which of the following                                             |   |  |  |
|     | i. When $1/n=0$ , the adsorption is independent                                                                       | endent of pressure.                                                                   |   |  |  |
|     | ii. When n=0, the plot of $x/m$ vs p graph                                                                            | h is a line parallel to x axis.                                                       |   |  |  |
|     | iii. When 1/n=0, the adsorption is directly                                                                           | ly proportional to pressure.                                                          |   |  |  |
|     | iv. When $n=0$ , plot of $x/m$ vs p is a curve                                                                        | e                                                                                     |   |  |  |
|     | (A) i and ii                                                                                                          | (B) ii and iv                                                                         |   |  |  |
|     | (C) 1 and 111                                                                                                         | (D) all are false                                                                     |   |  |  |
| ()  |                                                                                                                       |                                                                                       |   |  |  |

- In the extraction of chlorine by electrolysis of an aqueous solution of sodium chloride, which of the following statements are true? i.  $\Delta G^0$  for the overall reaction is positive ii.  $\Delta G^0$  for the overall reaction is negative iii.  $E^0$  for the overall reaction is positive iv.  $E^0$  for the overall reaction is negative 62.

  - (A) i and iii i and iv (B)
  - (C) ii and iii (D) iii and iv

| 63. | Which                      | of the following pairs of ions are isoelectror                                                                                               | nic and                     | l isostructural ?                                                                                                                           |
|-----|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|     | (A)                        | $NO_2^+$ and $NO_3^-$                                                                                                                        | (B)                         | $\text{ClO}_3^-$ and $\text{ICl}_4^-$                                                                                                       |
|     | (C)                        | $XeO_3^{2-}$ and $PCl_3$                                                                                                                     | (D)                         | $\text{ClO}_3^-$ and $\text{SO}_3^{2-}$                                                                                                     |
| 64. | Which                      | of the following hydrides is the strongest red                                                                                               | ducing                      | g agent?                                                                                                                                    |
|     | (A)                        | NH <sub>3</sub>                                                                                                                              | (B)                         | PH <sub>3</sub>                                                                                                                             |
|     | (C)                        | AsH <sub>3</sub>                                                                                                                             | (D)                         | SbH <sub>3</sub>                                                                                                                            |
| 65. | Consid                     | er the reactions,                                                                                                                            |                             |                                                                                                                                             |
|     | i.                         | $Zn + Conc. HNO_3 (hot) \longrightarrow Zn (N)$                                                                                              | $(O_3)_2 +$                 | $-X + H_2O$                                                                                                                                 |
|     | ii.                        | $Zn + dil. HNO_3 (cold) \longrightarrow Zn (N)$                                                                                              | $(O_3)_2 -$                 | + Y + H <sub>2</sub> O                                                                                                                      |
|     | (A)                        | NO NO                                                                                                                                        | $(\mathbf{B})$              | NO. NO.                                                                                                                                     |
|     | $(\Gamma)$                 | $N_2O, NO$                                                                                                                                   | $(\mathbf{D})$              | NO NO                                                                                                                                       |
|     | (C)                        | 1v <sub>2</sub> , 1v <sub>2</sub> O                                                                                                          | (D)                         | 1102, 110                                                                                                                                   |
| 66. | When H<br>mangar           | KMnO <sub>4</sub> acts as an oxidizing agent in weakly<br>nese decreases by:                                                                 | alkali                      | ne medium, the oxidation number of                                                                                                          |
|     | (A)                        | 1                                                                                                                                            | (B)                         | 2                                                                                                                                           |
|     | (C)                        | 3                                                                                                                                            | (D)                         | 5                                                                                                                                           |
| 67. | Acidifi<br>formati         | ed potassium dichromate solution turns gree                                                                                                  | en whe                      | n $Na_2SO_3$ is added to it due to the                                                                                                      |
|     | (A)                        | CrSO <sub>4</sub>                                                                                                                            | (B)                         | $Cr_2(SO_4)_2$                                                                                                                              |
|     | $(\mathbf{C})$             | $\operatorname{Cr}\Omega_{4}^{2}$                                                                                                            | (D)                         | $Cr_2(SO_2)_2$                                                                                                                              |
|     | (0)                        |                                                                                                                                              | (D)                         | 612(003)3                                                                                                                                   |
| 68. | The d-e<br>Which<br>number | electron configurations of $Cr^{2+}$ , $Mn^{2+}$ , $Fe^{2+}$ arone of the following complexes will exhibit rs of Cr=24, Mn=25, Fe=26, Co=27) | nd Co <sup>2</sup><br>minin | <sup>++</sup> are d <sup>4</sup> , d <sup>5</sup> , d <sup>6</sup> and d <sup>7</sup> , respectively.<br>num paramagnetic behavior? (atomic |
|     | (A)                        | $[Cr(H_2O)_6]^{2+}$                                                                                                                          | (B)                         | $[Mn(H_2O)_6]^{2+}$                                                                                                                         |
|     | (C)                        | $[Fe(H_2O)_6]^{2+}$                                                                                                                          | (D)                         | $[Co(H_2O)_6]^{2+}$                                                                                                                         |
| 69. | When 2<br>is:              | 2-Bromopentane is heated with potassium et                                                                                                   | hoxid                       | e in ethanol, the major product obtained                                                                                                    |
|     | (A)                        | 2-Ethoxypentane                                                                                                                              | (B)                         | Pent-1-ene                                                                                                                                  |
|     | (C)                        | Cis-Pent-2-ene                                                                                                                               | (D)                         | Trans-Pent-2-ene                                                                                                                            |
| 70. | Which                      | of the following undergoes nucleophilic sub                                                                                                  | stituti                     | on exclusively by $S_N^1$ mechnism?                                                                                                         |
|     | (A)                        | Chloroethane                                                                                                                                 | (B)                         | Isopropyl chloride                                                                                                                          |
|     | (C)                        | Chlorobenzene                                                                                                                                | (D)                         | Benzyl chloride                                                                                                                             |
| 71. | The nu                     | mber of possible stereoisomers for CH <sub>3</sub> CH=                                                                                       | CHCH                        | H <sub>2</sub> CH(Br)CH <sub>3</sub> is:                                                                                                    |
|     | (A)                        | 8                                                                                                                                            | (B)                         | 2                                                                                                                                           |
|     | (C)                        | 4                                                                                                                                            | (D)                         | 6                                                                                                                                           |
| 72. | 2-Meth                     | oxy-2-methylpropane on heating with HI pr                                                                                                    | oduce                       | s:                                                                                                                                          |
|     | (A)                        | Methanol and sec-propyl iodide                                                                                                               | (B)                         | Methyl iodide and tert-butyl alcohol                                                                                                        |
|     | (C)                        | Methyl iodide and isobutene                                                                                                                  | (D)                         | Methanol and tet-butyl iodide                                                                                                               |
| 73. | The lea                    | st acidic compound among the following is:                                                                                                   |                             |                                                                                                                                             |
|     | (A)                        | o-Nitrophenol                                                                                                                                | (B)                         | m-Nitrophenol                                                                                                                               |
|     | (C)                        | p-Nitrophenol                                                                                                                                | (D)                         | Phenol                                                                                                                                      |
|     |                            |                                                                                                                                              |                             |                                                                                                                                             |

| 74. | An alkene $C_7H_{14}$ on reductive ozonolysis gives an aldehyde with formula $C_3H_6O$ and a ketone.<br>The ketone is:                 |                                                                                                                          |                                               |                                                  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|--|--|--|--|
|     | (A) 2-Butanone                                                                                                                         |                                                                                                                          | (B)                                           | 2-Pentanone                                      |  |  |  |  |
|     | (C) 3-Pentanone                                                                                                                        |                                                                                                                          | (D)                                           | Propanone                                        |  |  |  |  |
| 75. | The increasing order of the rate of addition of HCN to the compounds i) Formaldehyde ii)<br>Acetone iii) Acetophenone iv) benzophenone |                                                                                                                          |                                               |                                                  |  |  |  |  |
|     | (A)  i < ii < iii < iv                                                                                                                 |                                                                                                                          | (B)                                           | iv < ii < iii < i                                |  |  |  |  |
|     | (C) $iv < iii < ii < i$                                                                                                                |                                                                                                                          | (D)                                           | iv< i< ii< iii                                   |  |  |  |  |
| 76. | 6. The carboxylic acid that does not undergo Hell-Vohlard-Zelinsky reaction is:                                                        |                                                                                                                          |                                               |                                                  |  |  |  |  |
|     | (A) CH <sub>3</sub> COOH                                                                                                               | -                                                                                                                        | (B)                                           | (CH <sub>3</sub> ) <sub>2</sub> CHCOOH           |  |  |  |  |
|     | (C) $CH_3CH_2CH_2$                                                                                                                     | СООН                                                                                                                     | (D)                                           | (CH <sub>3</sub> ) <sub>3</sub> CCOOH            |  |  |  |  |
| 77. | NaNO <sub>2</sub> /                                                                                                                    | $\stackrel{\text{(HCl}}{\longrightarrow} X \stackrel{P/Br_2}{\longrightarrow} Y \stackrel{\text{NH}_3}{\longrightarrow}$ | Z                                             |                                                  |  |  |  |  |
|     | - 22                                                                                                                                   | (excess)                                                                                                                 | _                                             |                                                  |  |  |  |  |
|     | In the above sequen                                                                                                                    | ice, Z is:                                                                                                               | (7)                                           |                                                  |  |  |  |  |
|     | (A) cyanoethane                                                                                                                        |                                                                                                                          | (B)                                           | ethanamide                                       |  |  |  |  |
|     | (C) methanamin                                                                                                                         | e                                                                                                                        | (D)                                           | etnanamine                                       |  |  |  |  |
| 78. | The attachment of v value?                                                                                                             | which of the following group at                                                                                          | para p                                        | osition in aniline will raise the K <sub>b</sub> |  |  |  |  |
|     | (A) $-SO_3H$                                                                                                                           |                                                                                                                          | (B)                                           | -OH                                              |  |  |  |  |
|     | (C) –F                                                                                                                                 |                                                                                                                          | (D)                                           | -Br                                              |  |  |  |  |
| 79. | Which of the follow                                                                                                                    | ving is an example of globular                                                                                           | orotein                                       | ?                                                |  |  |  |  |
|     | (A) myosin                                                                                                                             |                                                                                                                          | (B)                                           | collagen                                         |  |  |  |  |
|     | (C) keratin                                                                                                                            |                                                                                                                          | (D)                                           | haemoglobin                                      |  |  |  |  |
| 80. | Which one of the fo                                                                                                                    | llowing is synthesized in our b                                                                                          | ody by                                        | y sun rays?                                      |  |  |  |  |
|     | (A) Vitamin D                                                                                                                          | 2                                                                                                                        | (B)                                           | Vitamin B                                        |  |  |  |  |
|     | (C) Vitamin K                                                                                                                          |                                                                                                                          | (D)                                           | Vitamin A                                        |  |  |  |  |
| 81  | Caprolactum is the                                                                                                                     | is the starting material for the s                                                                                       | vnthes                                        | is of                                            |  |  |  |  |
|     | (A) Nylon-6                                                                                                                            |                                                                                                                          | (B)                                           | Nylon6,6                                         |  |  |  |  |
|     | (C) Terylene                                                                                                                           |                                                                                                                          | (D)                                           | Nylon 10                                         |  |  |  |  |
| 82  | The species which a                                                                                                                    | can serve as an initiator for cati                                                                                       | onic no                                       | olymerization is                                 |  |  |  |  |
| 02. | (A) Lithium alur                                                                                                                       | ninium hydride                                                                                                           | (B)                                           | Nitric acid                                      |  |  |  |  |
|     | (C) Aluminium                                                                                                                          | chloride                                                                                                                 | (D)                                           | BuLi                                             |  |  |  |  |
| 82  | Aspirin is on:                                                                                                                         |                                                                                                                          |                                               |                                                  |  |  |  |  |
| 05. | (A) analoesic                                                                                                                          |                                                                                                                          | (B)                                           | antipyretic                                      |  |  |  |  |
|     | (C) antimalarial                                                                                                                       |                                                                                                                          | (D)                                           | Both analgesic and antipyretic                   |  |  |  |  |
| 0.4 |                                                                                                                                        | o                                                                                                                        |                                               |                                                  |  |  |  |  |
| 84. | The equivalent mas $(A)$ Up 16 - 6 it - 4                                                                                              | s of iron in the reaction $2Fe + 3$                                                                                      | $\operatorname{SCl}_2 \rightarrow \mathbb{C}$ | · 2FeCl <sub>3</sub> 1S:                         |  |  |  |  |
|     | (A) Fiall OI Its at $(C)$ Same as atom                                                                                                 | onne mass                                                                                                                | (D)<br>(B)                                    | One fourth of its atomic mass                    |  |  |  |  |
|     | (C) Same as atom                                                                                                                       | 1110 111855                                                                                                              | (D)                                           | one routin of its atollite mass                  |  |  |  |  |

| 85.         | Which o                                     | f the following sets of quantum numbers is                                                                  | s corre           | ect for an electron in 4f subshell?                                      |
|-------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------|
|             | (A) n=                                      | =4, 1=3, m=4, s=+1/2                                                                                        | <b>(B)</b>        | n=4, $l=3$ , $m=-4$ , $s=-1/2$                                           |
|             | (C) n <sup>2</sup>                          | =4, l=3, m=+1, s=+1/2                                                                                       | (D)               | n=3, $l=2$ , $m=-2$ , $s=+1/2$                                           |
|             |                                             |                                                                                                             |                   |                                                                          |
| 86.         | The corr                                    | ect sequence of atomic radii is:                                                                            |                   |                                                                          |
|             | (A) N                                       | la>Mg>Al>Si                                                                                                 | (B)               | Al>Si>Na>Mg                                                              |
|             | (C) S                                       | i>Al>Mg>Na                                                                                                  | (D)               | Si>Al>Na>Mg                                                              |
| 87          | In which                                    | of the following the bond angle around the                                                                  | ie cen            | tral atom is maximum?                                                    |
| 07.         | $(\Delta)$ N                                | H <sub>a</sub>                                                                                              | (B)               | NH <sup>+</sup>                                                          |
|             | $(\Gamma)$ P                                | Cl.                                                                                                         | (D)               | SC1                                                                      |
|             | (C) 1                                       |                                                                                                             | (D)               | 5612                                                                     |
| 88.         | Which o                                     | f the following molecule does not exist                                                                     |                   |                                                                          |
|             | (A) N                                       | F <sub>3</sub>                                                                                              | (B)               | NF5                                                                      |
|             | (C) P                                       | F <sub>5</sub>                                                                                              | )                 | N <sub>2</sub> H <sub>4</sub>                                            |
|             | (0) 1                                       | - 5                                                                                                         | (2)               |                                                                          |
| 89.         | If helium                                   | n is allowed to expand in vacuum, it liberat                                                                | tes hea           | at because                                                               |
|             | (A) It                                      | is an inert gas                                                                                             | (B)               | It is an ideal gas                                                       |
|             | (C) It                                      | s critical temp. is low                                                                                     | (D)               | It is a light gas                                                        |
|             |                                             | I                                                                                                           |                   | 6 6                                                                      |
| 90.         | i) H <sub>2</sub> (g) -                     | $+ 1/2O_2(g) \rightarrow H_2O(I) + x KJ$ ii) $H_2(g) +$                                                     | 1/2O <sub>2</sub> | $(g) \rightarrow H_2O(g) + y KJ$ ; For the given two                     |
|             | reactions                                   | с, с                                                                    |                   |                                                                          |
|             | (A) x                                       | > y                                                                                                         | (B)               | x < y                                                                    |
|             | (C) x                                       | = y                                                                                                         | (D)               | $\mathbf{x} + \mathbf{y} = 0$                                            |
|             |                                             |                                                                                                             |                   |                                                                          |
| 91.         | If the bo                                   | nd dissociation energies of XY, $X_2$ , $Y_2$ (all                                                          | diato             | mic molecules) are in the ratio 1:1:0.5,                                 |
|             | respectiv                                   | vely and $\Delta_{\rm f}$ H of XY is -200KJmol <sup>-1</sup> , the box                                      | nd dis            | sociation energy of $X_2$ will be:                                       |
|             | (A) 4                                       | 00 KJmol <sup>-1</sup>                                                                                      | (B)               | 300 KJmol <sup>-1</sup>                                                  |
|             | (C) 20                                      | 00 KJmol <sup>-1</sup>                                                                                      | (D)               | $100 \text{ KJmol}^{-1}$                                                 |
| 02          | What wi                                     | Il ha the correct order of vanour programs                                                                  | fwate             | $r$ other of and other at $20^{0}$ C? Given that                         |
| 92.         | among th                                    | If be the correct order of vapour pressure of                                                               | ng poi            | int and other has minimum boiling point                                  |
|             | $(\Lambda)$ W                               | Veter ether etherol                                                                                         | $(\mathbf{D})$    | Water athenal athar                                                      |
|             | (A) W                                       |                                                                                                             | (D)               |                                                                          |
|             | (C) E                                       | ther <ethanoi<water< td=""><td>(D)</td><td>Etnanoi<etner<water< td=""></etner<water<></td></ethanoi<water<> | (D)               | Etnanoi <etner<water< td=""></etner<water<>                              |
| 93          | Which o                                     | f the following will occur if a 0.1M solution                                                               | on of a           | weak acid is diluted to 0.01M at                                         |
| <i>))</i> . | constant                                    | temperature?                                                                                                | /// UI u          | weak dold is dilated to 0.01111 at                                       |
|             | (A) []                                      | $H^+$ will decrease to 0 001M                                                                               | (B)               | pH will decrease                                                         |
|             | $(\Gamma)$ $(\Gamma)$ $(\Gamma)$ $(\Gamma)$ | ercentage ionization will increase                                                                          | (D)               | K will increase                                                          |
|             | (0) 1                                       | ereeninge forization with mereuse                                                                           | (D)               | Ka win increase                                                          |
| 94.         | Which o                                     | f the following species involves the transfe                                                                | er of 5           | N <sub>A</sub> electrons per mole of it ?                                |
|             | (A) N                                       | $\ln O_4^2 \rightarrow Mn O_4^2$                                                                            | (B)               | $MnO_4 \rightarrow Mn^{2+}$                                              |
|             | (C) M                                       | $\ln O_4 \rightarrow MnO_2$                                                                                 | (D)               | $\operatorname{CrO_4}^{\overline{2}} \rightarrow \operatorname{Cr}^{3+}$ |
|             | (2) 10                                      |                                                                                                             | (2)               |                                                                          |
|             |                                             |                                                                                                             |                   |                                                                          |

| 95.  | 30-vo      | lume hyderogen peroxide means:                                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|------------|--------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | (A)        | 30% H <sub>2</sub> O <sub>2</sub> by volume                                    | (B)            | $30g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g  solution $ |
|      | (C)        | 1 cm <sup>3</sup> of solution liberates 30 cm <sup>3</sup> of $O_2$ gas at STP | (D)            | $30 \text{ cm}^3$ of the solution contains one mole of $H_2O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 96.  | The co     | orrect sequence of covalent character is repre                                 | sented         | by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | (A)<br>(C) | LiCl <nacl<becl<sub>2<br/>NaCl<licl< becl<sub="">2</licl<></nacl<becl<sub>     | (B)<br>(D)     | BeCl <sub>2</sub> <licl<nacl<br>BeCl<sub>2</sub><nacl< licl<="" td=""></nacl<></licl<nacl<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 97.  | Whick      | h of the following is known as pyrene?                                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | (A)        | CCl <sub>4</sub>                                                               | (B)            | CS <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | (C)        | $S_2Cl_2$                                                                      | (D)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 98.  | The m      | nost stable carbocation amongst the following                                  | g is:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | (A)        | $(CH_3)_2CH^+$                                                                 | (B)            | $Ph_3C^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | (C)        | CH <sub>3</sub> CH <sub>2</sub>                                                | (D)            | $CH_2 - CH - CH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 99.  | The m      | nolecule that will have dipole moment is:                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | (A)        | 2,2-Dimethylpropane                                                            | (B)            | Cis-2-Butene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | (C)        | Trails-2-Dutene                                                                | (D)            | 2,2,3,5-1 ett alletti yloutaile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100. | Of the     | e five isomeric hexanes, the isomer which car                                  | n give 1       | two monochlorinated compound is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | (A)        | 2-Methylpentane                                                                | (B)            | 2,2-Dimethylbutane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | (C)        | 2,5-Dimetryloutane                                                             | (D)            | n-nexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 101. | Cross      | sing over occurs in meiosis I during:                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | (A)        | Metaphase                                                                      | (B)            | Telophase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | (C)        | Anaphanse                                                                      | (D)            | Pachytene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 102. | Powe       | er house of the cell:                                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | (A)        | Golgi body                                                                     | (B)            | Ribosomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | (C)        | Mitochondria                                                                   | (D)            | Lysosomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 103  | Gene       | tics is the study of                                                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1001 | (A)        | Heredity                                                                       | (B)            | Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | (C)        | Both A and B                                                                   | (D)            | None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 104  | In cos     | , linked inheritance, characters are needed                                    | d from         | n father to the grandsons through his                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 104. | (A)        | Daughter                                                                       | (B)            | Son                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | (C)        | Both daughter and son                                                          | (D)            | Any of them                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 105  |            |                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 105. | Whic       | h of the following bases is not present in                                     | $(\mathbf{P})$ | Thymine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | (A)        | Adenine                                                                        | (D)<br>(D)     | Cvtosine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | (-)        |                                                                                | (2)            | - )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| 106. | <ul><li>Mendel's principle of independent assortment c</li><li>(A) Monohybrid cross</li><li>(C) Both A and B</li></ul>            | can be<br>(B)<br>(D) | demonstrated through:<br>Dihybrid cross<br>Any of them     |
|------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------|
| 107. | <ul> <li>On hydrolysis, maltose gives</li> <li>(A) glucose + glucose</li> <li>(C) glucose + fructose</li> </ul>                   | (B)<br>(D)           | glucose + lactose<br>glucose + galactose                   |
| 108. | <ul><li>A dipeptide has peptide bonds.</li><li>(A) Three</li><li>(C) Two</li></ul>                                                | (B)<br>(D)           | One<br>None of them                                        |
| 109. | <ul><li>Which vitamin can be synthesized by green plabut not by mammals?</li><li>(A) Ascorbic acid</li><li>(C) Thiamine</li></ul> | nts ar<br>(B)<br>(D) | nd various micro-oraganisms<br>Pantothenic acid<br>Retinol |
| 110. | <ul><li>Bacterial cell wall is made up of:</li><li>(A) Chitin</li><li>(C) Peptidoglycan</li></ul>                                 | (B)<br>(D)           | Cellulose<br>All the above                                 |
| 111. | <ul><li>Plant viruses are generally of:</li><li>(A) RNA</li><li>(C) mRNA</li></ul>                                                | (B)<br>(D)           | DNA<br>tRNA                                                |
| 112. | <ul><li>Gram positive aerobic, filamentous bacteria wi</li><li>(A) Algae</li><li>(C) Bacteria</li></ul>                           | th hyp<br>(B)<br>(D) | bhae are known as:<br>Actinomycetes<br>Fungi               |
| 113. | <ul><li>Conversion of organic matter in to simple inorg</li><li>(A) Immobilization</li><li>(C) Co<sub>2</sub> fixation</li></ul>  | ganic<br>(B)<br>(D)  | forms is called:<br>Mineralization<br>Nitrification        |
| 114. | Excess carbon (> C/N ratio) leads to rate of dec<br>(A) Slow<br>(C) Optimum                                                       | compo<br>(B)<br>(D)  | osition:<br>Fast<br>None                                   |
| 115. | <ul><li>N<sub>2</sub> fixing cells of cyanobacteria are known as:</li><li>(A) Cyst</li><li>(C) Spores</li></ul>                   | (B)<br>(D)           | Akinetes<br>Heterocyst                                     |
| 116. | Livestock is important source of:<br>(A) Milk<br>(C) Manure                                                                       | (B)<br>(D)           | Meat<br>All of these                                       |
|      |                                                                                                                                   |                      |                                                            |

| 117. | <ul><li>Dairy cattle and buffalo can be called as:</li><li>(A) Caprine</li><li>(C) Bovine</li></ul>         | (B)<br>(D)             | Ovine<br>Equine                  |
|------|-------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------|
| 118. | <ul><li>Best breed of buffalo in India:</li><li>(A) Nili Ravi</li><li>(C) Surti</li></ul>                   | (B)<br>(D)             | Murrah<br>Toda                   |
| 119. | <ul><li>Best layer poultry strain is:</li><li>(A) WLH</li><li>(C) Karaknath</li></ul>                       | (B)<br>(D)             | Minorca<br>Sutlez                |
| 120. | Normal birth weight (Kg) of healthy buffalo<br>(A) 20<br>(C) 40                                             | calf is:<br>(B)<br>(D) | 30<br>50                         |
| 121. | Number of teats in buffalo:<br>(A) 2<br>(C) 6                                                               | (B)<br>(D)             | 4<br>8                           |
| 122. | Dry matter requirement (kg) of a cow weighin<br>(A) 8<br>(C) 12                                             | ng 400<br>(B)<br>(D)   | kg is:<br>10<br>14               |
| 123. | <ul> <li>Green fodder requirement of adult cattle (kg):</li> <li>(A) 30</li> <li>(C) 50</li> </ul>          | (B)<br>(D)             | 40<br>60                         |
| 124. | <ul><li>Which of the following crops is the best for had</li><li>(A) Jowar</li><li>(C) Berseem</li></ul>    | ay mak<br>(B)<br>(D)   | cing:<br>Bajra<br>Oat            |
| 125. | Normal body temperature of healthy poultry b<br>(A) 37.0<br>(C) 107.0                                       | oird (°H<br>(B)<br>(D) | 7):<br>98.6<br>117.0             |
| 126. | <ul><li>ICAR-National Dairy Research Institute (NDI</li><li>(A) Karnal</li><li>(C) Bareilly</li></ul>       | RI) is 1<br>(B)<br>(D) | ocated at:<br>New Delhi<br>Anand |
| 127. | <ul><li>Excessive gas accumulation in rumen indicate</li><li>(A) Impaction</li><li>(C) Milk fever</li></ul> | es:<br>(B)<br>(D)      | Bloat<br>Foot and Mouth Disease  |
|      |                                                                                                             |                        |                                  |

| 128. | <ul><li>Most fatal disease in farm animals is:</li><li>(A) Foot and Mouth Disease</li><li>(C) Rinderpest</li></ul>                                    | (B)<br>(D)              | HS<br>Anthrax                                                                                          |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------|
| 129. | Semen is stored in liquid nitrogen at (°C):<br>(A) -79<br>(C) 79                                                                                      | (B)<br>(D)              | -196<br>196                                                                                            |
| 130. | <ul><li>During Artificial Insemination (AI) semen sl</li><li>(A) Vagina</li><li>(C) Uterus</li></ul>                                                  | hould be<br>(B)<br>(D)  | e deposited<br>Cervix<br>Fallopian tube                                                                |
| 131. | <ul> <li>Seeds of groundnut contain about:</li> <li>(A) 25% oil and 50% protein</li> <li>(C) 40% oil and 40% protein</li> </ul>                       | (B)<br>(D)              | 20% oil and 40% protein<br>50% oil and 25% protein                                                     |
| 132. | <ul><li>Organic carbon is a measure of</li><li>(A) Available nitrogen in soil</li><li>(C) Excess of carbon in soil</li></ul>                          | (B)<br>(D)              | Available nutrient in soil<br>Excess of iron in soil                                                   |
| 133. | <ul><li>Which among the following element is consistent.</li><li>(A) Calcium</li><li>(C) Nitrogen</li></ul>                                           | idered ir<br>(B)<br>(D) | nmobile in the plant<br>Phosphorus<br>Magnesium                                                        |
| 134. | <ul><li>Which among the following is recommended</li><li>(A) HD 2960</li><li>(C) PBW 725</li></ul>                                                    | d variety<br>(B)<br>(D) | of durum wheat:<br>WH 896<br>WH 711                                                                    |
| 135. | Recommended dose of nutrients for berseem<br>(A) $10 \text{ kg N}, 28 \text{ kg P}_2\text{O}_5$<br>(C) $20 \text{ kg N}, 40 \text{ kg P}_2\text{O}_5$ | (kg/acr<br>(B)<br>(D)   | e) is:<br>40 kg N, 25 kg P <sub>2</sub> O <sub>5</sub><br>20 kg N, 20 kg P <sub>2</sub> O <sub>5</sub> |
| 136. | Optimum row spacing for cotton is:<br>(A) 50 cm<br>(C) 67.5 cm                                                                                        | (B)<br>(D)              | 60 cm<br>75 cm                                                                                         |
| 137. | <ul><li>Optimum sowing time of summer moong in</li><li>(A) March</li><li>(C) First fortnight of April</li></ul>                                       | the state<br>(B)<br>(D) | e is:<br>Second fortnight of February<br>End June-early July                                           |
| 138. | <ul><li>'White alkali' soil refers to:</li><li>(A) Acid soil</li><li>(C) Salina sodic soil</li></ul>                                                  | (B)<br>(D)              | Saline soil<br>Sodic soil                                                                              |
| 139. | The exchange sodium percentage (ESP) of a (A) More than 15                                                                                            | lkali soi<br>(B)        | ls is always:<br>Any value                                                                             |

| 140. | ICAR    | -Central Arid Zone Research Institute is   | s locat    | ed at:                       |
|------|---------|--------------------------------------------|------------|------------------------------|
|      | (A)     | Nagpur                                     | (B)        | Hyderabad                    |
|      | (C)     | New Delhi                                  | (D)        | Jodhpur                      |
| 141. | India i | s divided in to ecological zones.          |            |                              |
|      | (A)     | 12                                         | (B)        | 10                           |
|      | (C)     | 15                                         | (D)        | 20                           |
| 142. | Recon   | nmended seed rate (kg/ha) of dhaincha o    | or sunh    | nemp for green manuring is:  |
|      | (A)     | 20                                         | (B)        | 30                           |
|      | (C)     | 40                                         | (D)        | 50                           |
| 143. | Recon   | nmended seed rate for spring season mu     | ngbea      | n is                         |
|      | (A)     | 15-20 kg per acre                          | (B)        | 25-30 kg per hectare         |
|      | (C)     | 15-20 kg per hectare                       | (D)        | 10 kg per hectare            |
| 144. | For tra | insplanting of pearl millet (bajra) in Har | yana,      | optimum age of seedlings is: |
|      | (A)     | Two weeks                                  | (B)        | Three weeks                  |
|      | (C)     | Four weeks                                 | (D)        | Five weeks                   |
| 145. | Blind   | tillage refers to:                         |            |                              |
|      | (A)     | Summer ploughing                           | (B)        | Primary tillage              |
|      | (C)     | Hoeing before germination                  | (D)        | Hoeing in standing crop rows |
| 146. | Flame   | photometer is used for the determinatio    | n of:      |                              |
|      | (A)     | Nitrogen                                   | (B)        | Phosphorus                   |
|      | (C)     | Potassium                                  | (D)        | Boron                        |
| 147. | Tetraz  | olium test is conducted to test the:       |            |                              |
|      | (A)     | Physical purity of seed                    | (B)        | Percentage of weed seeds     |
|      | (C)     | Viability of seed                          | (D)        | Seed germination             |
| 148. | World   | Food Day is celebrated on:                 | <i>—</i> . |                              |
|      | (A)     | 5 June                                     | (B)        | 20 June                      |
|      | (C)     | 28 February                                | (D)        | 16 October                   |
| 149. | Which   | among the following is the best and che    | eapest     | method of weed control:      |
|      | (A)     | Cultural measures                          | (B)        | Herbicide based weed control |
|      | (C)     | Biological control                         | (D)        | Preventive measures          |
| 150. | Black   | soils in India belong to soil order:       |            |                              |
|      | (A)     | Alfisol                                    | (B)        | Inceptisol                   |
|      | (C)     | Vertisol                                   | (D)        | Oxisol                       |
| 151. | Which   | among the following crop has epigeal g     | germir     | nation?                      |
|      | (A)     | Sunflower                                  | (B)        |                              |
|      | (C)     | Kice                                       | (D)        | Pearl millet                 |

| 152. | Which                | h fraction of soil organic matter is soluble                                                            | e in bo              | oth alkali and acid:                                     |
|------|----------------------|---------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------|
|      | (A)                  | Humic acid                                                                                              | (B)                  | Fulvic acid                                              |
|      | (C)                  | Hymatomelonic acid                                                                                      | (D)                  | Humin acid                                               |
| 153. | Nitro<br>(A)<br>(C)  | gen use efficiency in rice can be increased<br>Delayed application of N<br>Application of S-coated urea | l by:<br>(B)<br>(D)  | Use of biofertilizers<br>Application of blue green algae |
| 154. | Which                | h stage of sugarcane is most critical for in                                                            | rigatio              | on?                                                      |
|      | (A)                  | Germination                                                                                             | (B)                  | Formative stage                                          |
|      | (C)                  | Grand growth phase                                                                                      | (D)                  | Ripening stage                                           |
| 155. | The la<br>(A)<br>(C) | argest producer of rapeseed-mustard in In<br>Haryana<br>Rajasthan                                       | dia is<br>(B)<br>(D) | Uttar Pradesh<br>Gujarat                                 |
| 156. | The to<br>(A)<br>(C) | erm Functional or Metabolic Nutrients wa<br>JV Leibig<br>DI Arnon                                       | (B)<br>(D)           | posed by:<br>DJ Nicholas<br>Mosanoba Fukuoka             |
| 157. | Botar<br>(A)<br>(C)  | iical name of sunnhemp is<br>Sesbania aculeata<br>Carthamus tinctorium                                  | (B)<br>(D)           | Trifolium alexandrinum<br>Crotolaria juncea              |
| 158. | The u                | pper limit of soil moisture available for p                                                             | lant g               | rowth is:                                                |
|      | (A)                  | PWP (15 bars)                                                                                           | (B)                  | Hygroscopic coefficient                                  |
|      | (C)                  | Field capacity (1/3 bars)                                                                               | (D)                  | Gravitational potential                                  |
| 159. | For w                | hich fertilizer, India is fully dependent or                                                            | n impo               | ort?                                                     |
|      | (A)                  | N fertilizers                                                                                           | (B)                  | K fertilizers                                            |
|      | (C)                  | P fertilizers                                                                                           | (D)                  | S fertilizers                                            |
| 160. | Agros                | stology is the branch of Agronomy that de                                                               | eals w               | ith cultivation of:                                      |
|      | (A)                  | Aromatic and medicinal crops                                                                            | (B)                  | Non edible oilseeds                                      |
|      | (C)                  | Fodder crops                                                                                            | (D)                  | Green manure crops                                       |
| 161. | With                 | excessive use of nitrogen in sugarcane, th                                                              | e sug                | ar content in juice is:                                  |
|      | (A)                  | Increased                                                                                               | (B)                  | Remains same                                             |
|      | (C)                  | Decreased                                                                                               | (D)                  | Not affected                                             |
| 162. | Bacte                | ria responsible for nitrogen fixation in sog                                                            | ybean                | is                                                       |
|      | (A)                  | Rhizobium leguminosarum                                                                                 | (B)                  | Rhizobium japonicum                                      |
|      | (C)                  | Rhizobium phaseoli                                                                                      | (D)                  | Rhizobium trifoli                                        |
| 163. | The n<br>(A)<br>(C)  | nost critical stage of irrigation in maize is<br>Silking stage<br>Grain development stage               | :<br>(B)<br>(D)      | Tasseling stage<br>Dough stage                           |
| 164. | Nippi<br>(A)<br>(C)  | ng in chickpea is beneficial to:<br>Promote branching<br>Check excessive vegetative growth              | (B)<br>(D)           | Promote flowering<br>Improve seed setting                |

| 165.                                                    | Quantity of urea required by w<br>(A) $130$                                                                             | wheat for one acre at a (B) | dose of 125 kg per hectare is:<br>90 |  |  |  |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|--|--|--|
|                                                         | (C) 110                                                                                                                 | (D)                         | 275                                  |  |  |  |
| 166.                                                    | Congress grass (Parthenium hysterophorus) can be controlled by insect:                                                  |                             |                                      |  |  |  |
|                                                         | (A) Chrysoperla                                                                                                         | (B)                         | Dactylopius tomentosus               |  |  |  |
|                                                         | (C) Zygogramma bicolorata                                                                                               | <i>i</i> (D)                | Bacillus thuringiensis               |  |  |  |
| 167.                                                    | Application of organic material with wider C:N ratio (usually more than (20:1) to soil leads to:                        |                             |                                      |  |  |  |
|                                                         | (A) N immobilization                                                                                                    | (B)                         | N leaching                           |  |  |  |
|                                                         | (C) Immediate release in N                                                                                              | (D)                         | N mineralization                     |  |  |  |
| 168.                                                    | Heavy shedding of buds and bolls in cotton occurs due to:                                                               |                             |                                      |  |  |  |
|                                                         | (A) Deficiency of N in soil                                                                                             | (B)                         | Water stress at bud formation stage  |  |  |  |
|                                                         | (C) Deficiency of P in soil                                                                                             | (D)                         | Excess of N is soil                  |  |  |  |
| 169 'Whin tail' is brassica is due to the deficiency of |                                                                                                                         |                             |                                      |  |  |  |
|                                                         | (A) Calcium                                                                                                             | (B)                         | Magnesium                            |  |  |  |
|                                                         | (C) Manganese                                                                                                           | (D)                         | Zinc                                 |  |  |  |
| 170                                                     | Which kind of soil mineralogy                                                                                           | has the highest 'catio      | on exchange canacity'                |  |  |  |
| 1,01                                                    | (A) Kaolinite                                                                                                           | (B)                         | Illite                               |  |  |  |
|                                                         | (C) Montmorillonite                                                                                                     | (D)                         | Humus                                |  |  |  |
| 171                                                     | Optimum row spacing for fode                                                                                            | ler crons is:               |                                      |  |  |  |
| 1/1.                                                    | $(\Delta)$ 30 cm                                                                                                        | (B)                         | 60 cm                                |  |  |  |
|                                                         | (C) $45 \text{ cm}$                                                                                                     | (D)                         | 75 cm                                |  |  |  |
| 172                                                     | The belonce sheet of a dairy fo                                                                                         | rm ranragant:               |                                      |  |  |  |
| 1/2.                                                    | $(\Lambda)$ A sets                                                                                                      | (B)                         | Liabilities                          |  |  |  |
|                                                         | $(\mathbf{C})$ Both $(\mathbf{A})$ and $(\mathbf{B})$                                                                   | (D)                         | None of these                        |  |  |  |
| 172                                                     | Main lineitation in lasening for                                                                                        |                             | Tione of these                       |  |  |  |
| 1/3.                                                    | (A) Illitoraay                                                                                                          | m records in India is:      | Natura of forming                    |  |  |  |
|                                                         | (A) Initiality<br>(C) Big size of holding                                                                               | (B)                         | None of these                        |  |  |  |
|                                                         | (C) Big size of holding                                                                                                 | (D)                         | None of these                        |  |  |  |
| 174.                                                    | Profit and loss account is a typ                                                                                        | e of:                       |                                      |  |  |  |
|                                                         | (A) Personal account                                                                                                    | (B)                         | Real account                         |  |  |  |
|                                                         | (C) Nominal account                                                                                                     | (D)                         | None of these                        |  |  |  |
| 175.                                                    | Which is the most prominent b                                                                                           | book for keeping farm       | records and accounts:                |  |  |  |
|                                                         | (A) Journal                                                                                                             | (B)                         | Ledger                               |  |  |  |
|                                                         | (C) Cash book                                                                                                           | (D)                         | Purchase register                    |  |  |  |
| 176.                                                    | 5. The list of all the physical property of a business along with their values at a specific point of time is known as: |                             |                                      |  |  |  |
|                                                         | (A) Assets                                                                                                              | (B)                         | Liabilities                          |  |  |  |
|                                                         | (C) Farm inventory                                                                                                      | (D)                         | None of these                        |  |  |  |
| 177.                                                    | The decline in value of assets due to usage, accidental damage and time obsolescence known as                           |                             |                                      |  |  |  |
|                                                         | (A) Appreciation                                                                                                        | (B)                         | Depreciation                         |  |  |  |
|                                                         | (C) Interest                                                                                                            | (D)                         | None of these                        |  |  |  |
|                                                         |                                                                                                                         |                             |                                      |  |  |  |

| 178. | Which of the following is not a component of farm business:(A) Capital(B) Land                                             |                     |                                                          |
|------|----------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------|
|      | (C) Market                                                                                                                 | (D)                 | Labour and management                                    |
| 179. | Queen of Fruits is:<br>(A) Mango<br>(C) Litchi                                                                             | (B)<br>(D)          | Apple<br>Banana                                          |
| 180. | <ul><li>Low chilling pears are trained by:</li><li>(A) Espaliar system</li><li>(C) Modified leader system</li></ul>        | (B)<br>(D)          | Centre leader system<br>Y trellies system                |
| 181. | <ul><li>Wind break established in the orchards is of:</li><li>(A) Jamun</li><li>(C) Karonda</li></ul>                      | (B)<br>(D)          | Jhatti Khatti<br>Galgal                                  |
| 182. | <ul><li>Strawberry is propagated through:</li><li>(A) Stolon</li><li>(C) Crown</li></ul>                                   | (B)<br>(D)          | Runners<br>Suckers                                       |
| 183. | <ul><li>Epicotyl grafting is commonly done in:</li><li>(A) Guava</li><li>(C) Pear</li></ul>                                | (B)<br>(D)          | Litchi<br>Mango                                          |
| 184. | Daisy is cross between:(A)Fortune x Fremont mandarin(C) <u>Citrus grandis</u> Osbeck <u>Paradisi</u> Macf.                 | (B)<br>(D)          | King x Willow leaf<br>Sweet orange x <i>C trifoliata</i> |
| 185. | <ul><li>Arunika is cross between:</li><li>(A) Dashehari x Neelum</li><li>(C) Amrapali x Vanraj</li></ul>                   | (B)<br>(D)          | Neelum x Dashehari<br>Sensation x Amrapali               |
| 186. | <ul><li><i>Phytophthora</i> is controlled with the application of</li><li>(A) Ridomil</li><li>(C) c. M 45</li></ul>        | (B)<br>(D)          | Bayleton<br>All of these                                 |
| 187. | <ul><li>Yellow pigment in papaya fruit is:</li><li>(A) Xanthophyll</li><li>(C) Lycopene</li></ul>                          | (B)<br>(D)          | Carotene<br>Caricaxanthin                                |
| 188. | <ul><li>Which garden is also referred as 'Nature in Minia</li><li>(A) Japanese</li><li>(C) English</li></ul>               | ture:<br>(B)<br>(D) | Mughals<br>Persian                                       |
| 189. | <ul> <li>Tree with drooping inflorescence is:</li> <li>(A) Jacaranda mimosaefolia</li> <li>(C) Bassia latifolia</li> </ul> | (B)<br>(D)          | Salyx baylonica<br>Kigelia pinnata                       |
| 190. | <ul><li>Red scarlet is a cultivar of:</li><li>(A) Radish</li><li>(C) Onion</li></ul>                                       | (B)<br>(D)          | Carrot<br>Turnip                                         |

| 191. | Whick<br>(A)                                               | h of the following is a climacteric fruit?<br>Muskmelon          | (B)            | Tomato                                                              |  |  |
|------|------------------------------------------------------------|------------------------------------------------------------------|----------------|---------------------------------------------------------------------|--|--|
|      | (C)                                                        | Both A and B                                                     | (D)            | None of these                                                       |  |  |
| 192. | Sun se<br>(A)<br>(C)                                       | calding incidence usually occurs in:<br>Brinjal<br>Muskmelon     | (B)<br>(D)     | Tomato<br>Cauliflower                                               |  |  |
| 193. | Sex e<br>(A)                                               | xpression in pointed gourd is:<br>Monoecious                     | (B)            | Andromonoecious                                                     |  |  |
|      | (C)                                                        | Dioecious                                                        | (D)            | Hermaphrodite                                                       |  |  |
| 194. | Whick<br>(A)                                               | h of the following soil is most suitable for veg<br>Sandy        | getable<br>(B) | es?<br>Sandy Loam                                                   |  |  |
|      | (C)                                                        | Clay loam                                                        | (d)            | Clay                                                                |  |  |
| 195. | The so (A)                                                 | eed required for one hectare sowing of carrot<br>1-2 kg          | is<br>(B)      | 10-15 kg                                                            |  |  |
|      | (C)                                                        | 4-5 kg                                                           | (D)            | 15-20 kg                                                            |  |  |
| 196. | The main reason for blanching of fruits and vegetables is: |                                                                  |                |                                                                     |  |  |
|      | (A)<br>(C)                                                 | To make them soft<br>To make the products taste better           | (B)<br>(D)     | To inactivate enzymes<br>For long term preservation of products     |  |  |
| 197. | What is Canning                                            |                                                                  |                |                                                                     |  |  |
|      | (A)                                                        | Placing of foods in sealed metal containers                      | (B)            | Storage of foods in hermetically sealed containers                  |  |  |
|      | (C)                                                        | Placing cans in retorts                                          | (D)            | None of these                                                       |  |  |
| 198. | What is Brine                                              |                                                                  |                |                                                                     |  |  |
|      | (A)<br>(C)                                                 | A solution of sugar and water<br>A solution of vinegar and water | (B)<br>(D)     | A solution of salt and water<br>An additive used in food processing |  |  |
| 199. | The most economical way of drying fruits and vegetables is |                                                                  |                |                                                                     |  |  |
|      | (A)<br>(C)                                                 | Solar drying<br>Mechanical drying                                | (B)<br>(D)     | Oven drying<br>None of these                                        |  |  |
| 200. | Prese                                                      | Preservative used in tomato Ketchup is                           |                |                                                                     |  |  |
|      | (A)<br>(C)                                                 | Potassium Metabisulphite<br>Citric acid                          | (B)<br>(D)     | Sodium Benzoate<br>None of these                                    |  |  |