Sr.	Question
No.	

While walking on smooth surface one should take small steps to ensure 1. Large friction Small friction (A) (B) Larger normal force (C) Smaller normal force (D) 2. What happens to a vehicle travelling in an unbanked curved path if the friction between the road and tires suddenly disappears Moves along tangent Moves radially in (A) (B) (C) Moves radially out Moves along the curve (D) A ball of mass 0.2 kg strikes an obstacle and moves at 60° to its initial direction. If its speed 3. changes from 20m/s to 10m/s the magnitude of impulse received by the ball is -----Ns (A) $2\sqrt{7}$ (B) $2\sqrt{3}$ (D) (C) $2\sqrt{5}$ $3\sqrt{2}$ A spacecraft of mass 2000kg moving with 600 m/s suddenly explodes into two pieces. One piece 4. of mass 500 kg is stationary. The velocity of other part in m/s is (A) 600 (B) 800 1500 1000 (C) (D) 5. 16 kg 140 N 8 kg The force on 16 kg is.....? 4 kg 140N (A) (B) 120N 100N (C) 80N (D) A man of mass 40 kg is at rest between the walls. If coeff. of friction between man and wall is 6. 0.8, find the normal reaction exerted by wall on man (take g = 10 m/s/s)

7.

8.	Gravitational force between two bodies is F. The space around the mass is now filled with a liquid of specific gravity 3. The gravitational force will be				
	(A)	F/9	(B)	3F	
	(C)	F	(D)	F/3	
9.	A man weighs 75 kg on the surface of earth. His weight on the geostationary satellite is				
	(\mathbf{A})	infinity	(B)	150kg	
	(C)	2010	(D)	75/2 Kg	
10.	g at a (Λ)	depth of 1600 km inside the earth in m/s/s is	(D)	7.25	
	(\mathbf{C})	8.65	(D)	4.35	
11.	A bloc embec (A) (C)	ck of mass 19 M is suspended by a string of l ded in it. If the block completes the vertical 140 $20\sqrt{9.8}$	ength circle (B) (D)	1m. A bullet of mass M hits it and gets the velocity of bullet in m/s is $20\sqrt{19.6}$ 20	
12.	A rub impac	ber ball falls from a height of 4m and rebound	ds to 1	.5m. The % loss of energy during the	
	(A)	20	(B)	62.5	
	(C)	23	(D)	60	
13.	25 kg requir	of sand is deposited each second on a convey ed to maintain the belt in motion is	or bel	t moving at 10m/s. The extra power	
	(A)	2600W 225W	(B)	250W 2500W	
	(C)	525 W	(D)	2500 W	
14.	A unit	form rod of mass M and length L standing ve ag at the bottom. The moment of inertia will	rticall	y on a horizontal floor falls without	
	(A)	$ML^2/3$	(B)	$ML^2/6$	
	(C)	$ML^2/9$	(D)	$ML^{2}/12$	
15.	If the	velocity of C.M of a rolling body is V, then v	velocit	y of highest point in the body will be	
	(A)	$\sqrt{2V}$	(B)	$V_{V/2}$	
	(C)	2 V	(D)	V/ VZ	
16.	The an of the	ngular momentum of two rotating bodies are ir rotational K.E is	equal.	If the ratio of their M.I is 1:4, the ratio	
	(A) (C)	1:2	(В) (D)	2.1 4·1	
17	The le	and a function in a tank is fun. A hala 1 am ² is		at the bettern. The rate of lashess in m^3	
17.	/s is (t	ake $g = 10 \text{ m/s/s}$	made	at the bottom. The rate of leakage in m	
	(A)	10-3	(B)	10-4	
	(C)	10	(D)	10-2	
18.	Two b $3/5^{\text{th}}$	blocks A and B float in water. A floats with 1	/4 th of	its volume immersed and B floats with	
	(A)	5:12	(B)	12:5	
	(C)	3:20	(D)	20:3	

19.	The terminal velocity of a spherical ball of lead of radius R is Vwhile falling through a viscous liquid varies with R such that					
	(A)	V/R is constant	(B)	VR is constant		
	(C)	V is constant	(D)	V/R^2 is constant		
20.	A hyd other	raulic press uses a piston of 100 cm ² to exert piston that supports a mass of 2000 kg is (tak	a force $g = 1$	e of 10^7 dynes on water. The area of the 10 m/s/s)		
	(A)	100cm^2	(B)	10^9 cm^2		
	(C)	$2 \times 10^4 \text{ cm}^2$	(D)	$2 \times 10^{10} \text{ cm}^2$		
21.	When throug The v	kerosene and coconut oil of coeff. of viscosi gh the same pipe, under same pressure differe olume of kerosene that flows is	ty 0.00	02 and 0.0154 Ns/m ² are followed and same time collects 1 lit of coconut oil.		
	(A)	5.5 lit	(B)	6.6 lit		
	(C)	7.7 lit	(D)	8.8 lit		
22.	There	is a circular hole in metal plate. When the pl	ate is ł	neated the radius of the hole becomes		
	(A)	increased	(B)	decreased		
	(C)	unchanged	(D)	depends on metal		
23.	Specit given	fic heat of a substance depends on 1. Nature of the substance	of subs	stance. 2. Mass of substance. 3. Heat		
	(A)	Only one is correct	(B)	Both 1 and 2 are correct		
	(C)	All are correct	(D)	Only 1 and 3 are correct		
24.	In a g	ive process dW=0, dq is <0 then for a gas				
	(A)	Temperature increases	(B)	Volume decreases		
	(C)	Pressure increases	(D)	Pressure decreases		
25.	The e	fficiency of carnot engine depends on				
	(A)	Working substance	(B)	Sink temperature		
	(C)	Source temperature	(D)	Both B and C		
26.	A 200 with e	turn coil of self inductance 30 mH carries a each turn of coil.	curren	t of 5 mA. Find the magnetic flux linked		
	(A)	$7.5 \times 10^{-7} \text{Wb}$	(B)	1.6 x 10 ⁻⁷ Wb		
	(C)	$3 \ge 10^{-7} \text{Wb}$	(D)	1.5 x 10 ⁻⁷ Wb		
27.	The ir	stantaneous value of current in an AC circuit he current will be maximum?	t is I =	2 sin (100 π t + $\pi/3$) A. At what first		
	(A)	1/100 s	(B)	1/200 s		
	(C)	1/500 s	(D)	1 s		

28. What in electric system represents force in mechanical system ?

(A)	L	-	(B)	Ι
(C)	1/C		(D)	q

A capacitor of 1 μF is charged with 0.01C of electricity. How much energy is stored in it?
(A) 30 J
(B) 40 J
(C) 50 J
(D) 60 J

30.An electromagnetic wave is travelling in vacuum with a speed of $3 \ge 10^8$ m/s. Find the velocity in
a medium having relative electric and magnetic permeability 2 and 1, respectively.(A) $3/\sqrt{2} \ge 10^8$ m/s(B) $1.5 \ge 10^8$ m/s(C) $2 \ge 10^8$ m/s(D) No change

31. Trace the path of ray of light passing through a glass prism as shown in the figure. If the refractive index of glass is $\sqrt{3}$, find out the value of angle of emergence from prism.

32. Light wave from two coherent sources of intensities in ratio 64:1 produces interference. Calculate the ration of maximum and minima of the interference pattern.

(A)	8:1	(B)	64:1
(C)	9:7	(D)	81:49

33. In young's experiment, the width of the fringes obtained with light of wavelength 6000 A° is 2 mm. What will be the fringe width, if the entire apparatus is immersed in a liquid of refractive index 1.33?

(A)	1 mm	(B)	1.5 mm
(C)	2 mm	(D)	2.5 mm

34. Unpolarised light is incident on plane glass surface. What should be the angle of incidence in degrees, so that the reflected and refracted rays are perpendicular to each other?

(A)	37	(B)	47
(C)	57	(D)	67

35. Determine the de-Broglie wavelength associated with an electron, accelerated through a potential difference of 100 V.

(A)	1.227A°	(B)	12.27A°
(C)	122.7A°	(D)	1227A ^o

36. A particle with rest mass m₀ is moving with velocity c. What is the de-Broglie wavelength associated with it?

(A)	infinity	(B)	zero
(C)	radio wave	(D)	X ray

- Which among the following series gives visible light? 37.
 - Lyman (B) Balmer (A)
 - (C) Bracket

None of these (D)

38. Identify the logic operation performed by this circuit

The number of silicon atoms per m³ is $5 \ge 10^{28}$. This is doped simultaneously with $5 \ge 10^{22}$ atoms per m³ of arsenic and $5 \ge 10^{20}$ atoms per m³ of indium. Calculate the number of holes, given that 39. $n = 1.5 \times 10^{16} \text{ m}^{-3}$.

(A)	$4.54 \ge 10^9 \text{m}^{-3}$	(B)	$4.95 \times 10^{22} \text{m}^{-3}$
(C)	$1.5 \ge 10^{16} \text{m}^{-3}$	(D)	$5 \ge 10^{28} \text{m}^{-3}$

Two charges $+5\mu C$ and $-5\mu C$ are placed 5 mm apart. Determine E at a point 10 cm from centre 40. on the positive charge side along the axial line.

(A)	4.5 x 10 ⁵ N/C	(B)	$4.5 \times 10^{5} \text{NC}$
(C)	4.5 x 10 ⁻⁵ N/C	(D)	4.5 x 10 ⁻⁵ NC

- If the Gaussian surface is so chosen that there are some charges inside and some outside than the 41. electric field is due to
 - (A) Only inside charges (B)
 - All the charges (C)
- Only outside charges
- (D) Cannot determine

42. The following is a diagram showing the variation of E with r from centre of uniformly charge spherical shell of radius R

43. Net capacitance of 3 identical capacitor in series is 1 μ *F*. What is the net capacitance in μ *F* if connected in parallel?

(A)	3	(B)	6
(C)	9	(D)	12

44. An inductor of 5H carries a steady current of 2A. In what time if the current is made zero can a 40V self induced emf be produced in the inductor.

(A)	2s	(B)	1s
(C)	0.5s	(D)	0.25s

45. A cell of emf E and internal resistance r gives 0.5A with R=12 ohms and 0.25 with R = 25 ohms. Its internal resistance in ohms will be

(A)	0.5	(B)	1
(C)	2	(D)	3

46.

6 PCA A

47.	Two identical circular loops P and Q of radius r are placed in parallel planes with same axis at a distance of 2r. Find the midpoint of the axis between them if same current I flows through both loops.				
	(A) $\mu_0 I/2^{3/2} r$ (C) $\mu_0 I/4\pi r$	(B) $\mu_0 2 I/2^{3/2} r$ (D) Cannot be determined			
48.	A block of mass 4 kg is kept on a rough horizont 0.8. If a force of 19 N is applied on the block par between the block and floor is:	al surface. The coefficient of static friction is allel to the floor, then the force of friction			
	(A) 19N (C) 16N	(B) 18 N (D) 9.8N			
49.	Current in a circuit falls steadily from 2A to 0A i (A) 1H (C) 3H	 n 10 ms. Calculate L if emf induced is 200V. (B) 2H (D) 4H 			
50.	Self inductance of the air core inductor increases core. What is the relative permeability of the core (A) 500 (C) 900	from 0.01 mH to 10 mH on introducing an iron e used? (B) 800 (D) 1000			
51.	Among the following, the most stable complex is (A) $[Fe (H_2O)_6]^{3+}$ (C) $[Fe (C_2O_4)_3]^{3-}$	(B) $[Fe (NH_3)_6]^{3+}$ (D) $[Fe (Cl)_6]^{3-}$			
52.	Which is the correct coordination number (C.N) metal atom in $[Co(NH_3)_2(H_2O)_2Cl_2]^+$? (A) C.N=3, O.N=+1 (C) C.N=6, O.N=+1	 (B) C.N=4, O.N=+2 (D) C.N=6, O.N=+3 			
53.	In a solid, oxide ions are arranged in ccp, cations cation B occupy one third of the octahedral voids (A) ABO ₃ (C) AB ₃ O	A occupy one sixth of the tetrahedral voids and a. The formula of the solid is: (B) A ₃ BO (D) A ₃ B ₃ O ₃			
54.	On mixing acetone to methanol some of the hydr Which of the following statements is correct abo	ogen bonds between methanol molecules break. ut the above process?			
	 (A) At specific composition methanol acetone mixture will form minimum boiling azeotrope and show positive deviation from Raoult's law 	(B) At specific composition methanol acetone mixture will form maximum boiling azeotrope and show positive deviation from Raoult's law			
	(C) At specific composition methanole acetone mixture will form minimum boiling azeotrope and show negative deviation from Raoult's law	 (D) At specific composition methanole acetone mixture will form maximum boiling azeotrope and show negative deviation from Raoult's law 			
55.	$K_{\rm H}$ value for argon, carbon dioxide, formaldehyd and 0.413, respectively. The correct arrangement solubility is:	e and methane gases are 40.39, 1.67, 1.83 X 10 ⁻⁵ of these gases in the order of their increasing			
	(A) formaldehyde <methane<carbon dioxide<argon< td=""><td>(B) formaldehyde< carbon dioxide <methane<argon< td=""></methane<argon<></td></argon<></methane<carbon 	(B) formaldehyde< carbon dioxide <methane<argon< td=""></methane<argon<>			
	(C) argon <carbon dioxide<<br="">methane<formaldehyde< td=""><td>(D) argon <methane <carbon="" dioxide<br=""><formaldehyde< td=""></formaldehyde<></methane></td></formaldehyde<></carbon>	(D) argon <methane <carbon="" dioxide<br=""><formaldehyde< td=""></formaldehyde<></methane>			

56.	The number of faradays of electricity required for electrolytic conversion of the mole of nitrobenzene to aniline is:				
	(A) 3F	(B) 4F			
	$(C) \qquad 6F$	(D) 5F			
57.	The positive value of the standard electrode poter	ntial of Ag^+/Ag indicates that:			
	(A) This redox couple is a stronger reducing	(B) This redox couple is a stronger			
	agent than H^+/H_2 couple	oxidizing agent than H^+/H_2 couple			
	(C) Ag can displace H_2 from acid	(D) Ag can displace H_2 from base			
58	Milk is refrigerated in order to slow the rate of de	ecomposition by bacterial action. The decrease in	n		
20.	reaction rate is due to:		•		
	(A) A decrease in surface area	(B) A decrease in \triangle H for the reaction			
	(C) A decrease in the fraction of particles	(D) The introduction of an alternative			
	possessing sufficient energy	pathway with greater activation			
		energy.			
59.	Which of the following statements is not correct?	2			
	(A) The rate of a reaction decreases with	(B) The instantaneous rate a reaction is			
	passage of time as concentration of	same at any time during the reaction			
	reactants decrease (C) For a zero order reaction the	(D) The rate of a reaction decreases with			
	(C) For a zero order reaction the concentration of reactants remains	(D) The face of a reaction decreases with increase in concentration of reactant (s)		
	changed with passage of time	increase in concentration of reactant (s	,		
60.	Which of the following gases shows the lowest a	dsorption per gram of charcoal? The critical			
	temperatures are given in parenthesis:				
	(A) $H_2(33K)$	(B) $CH_4(190K)$			
	(C) $SO_2(630K)$	(D) $CO_2(304K)$			
61	Froundlich advantion isotherm is given by the ev	w procession $w/m = kn^{1/n}$ W/bish of the following			
01.	statements are false?	cpression x/m-kp : which of the following			
	i. When $1/n=0$, the adsorption is independent	endent of pressure.			
	ii. When n=0, the plot of x/m vs p graph	h is a line parallel to x axis.			
	iii. When 1/n=0, the adsorption is directly	ly proportional to pressure.			
	iv. When $n=0$, plot of x/m vs p is a curve	e			
	(A) i and ii	(B) ii and iv			
	(C) 1 and 111	(D) all are false			
()					

- In the extraction of chlorine by electrolysis of an aqueous solution of sodium chloride, which of the following statements are true? i. ΔG^0 for the overall reaction is positive ii. ΔG^0 for the overall reaction is negative iii. E^0 for the overall reaction is positive iv. E^0 for the overall reaction is negative 62.

 - (A) i and iii i and iv (B)
 - (C) ii and iii (D) iii and iv

63.	Which	of the following pairs of ions are isoelectror	nic and	l isostructural ?
	(A)	NO_2^+ and NO_3^-	(B)	ClO_3^- and ICl_4^-
	(C)	XeO_3^{2-} and PCl_3	(D)	ClO_3^- and SO_3^{2-}
64.	Which	of the following hydrides is the strongest red	ducing	g agent?
	(A)	NH ₃	(B)	PH ₃
	(C)	AsH ₃	(D)	SbH ₃
65.	Consid	er the reactions,		
	i.	$Zn + Conc. HNO_3 (hot) \longrightarrow Zn (N)$	$(O_3)_2 +$	$-X + H_2O$
	ii.	$Zn + dil. HNO_3 (cold) \longrightarrow Zn (N)$	$(O_3)_2 -$	+ Y + H ₂ O
	(A)	NO NO	(\mathbf{B})	NO. NO.
	(Γ)	N_2O, NO	(\mathbf{D})	NO NO
	(C)	1v ₂ , 1v ₂ O	(D)	1102, 110
66.	When H mangar	KMnO ₄ acts as an oxidizing agent in weakly nese decreases by:	alkali	ne medium, the oxidation number of
	(A)	1	(B)	2
	(C)	3	(D)	5
67.	Acidifi formati	ed potassium dichromate solution turns gree	en whe	n Na_2SO_3 is added to it due to the
	(A)	CrSO ₄	(B)	$Cr_2(SO_4)_2$
	(\mathbf{C})	$\operatorname{Cr}\Omega_{4}^{2}$	(D)	$Cr_2(SO_2)_2$
	(0)		(D)	612(003)3
68.	The d-e Which number	electron configurations of Cr^{2+} , Mn^{2+} , Fe^{2+} arone of the following complexes will exhibit rs of Cr=24, Mn=25, Fe=26, Co=27)	nd Co ² minin	⁺⁺ are d ⁴ , d ⁵ , d ⁶ and d ⁷ , respectively. num paramagnetic behavior? (atomic
	(A)	$[Cr(H_2O)_6]^{2+}$	(B)	$[Mn(H_2O)_6]^{2+}$
	(C)	$[Fe(H_2O)_6]^{2+}$	(D)	$[Co(H_2O)_6]^{2+}$
69.	When 2 is:	2-Bromopentane is heated with potassium et	hoxid	e in ethanol, the major product obtained
	(A)	2-Ethoxypentane	(B)	Pent-1-ene
	(C)	Cis-Pent-2-ene	(D)	Trans-Pent-2-ene
70.	Which	of the following undergoes nucleophilic sub	stituti	on exclusively by S_N^1 mechnism?
	(A)	Chloroethane	(B)	Isopropyl chloride
	(C)	Chlorobenzene	(D)	Benzyl chloride
71.	The nu	mber of possible stereoisomers for CH ₃ CH=	CHCH	H ₂ CH(Br)CH ₃ is:
	(A)	8	(B)	2
	(C)	4	(D)	6
72.	2-Meth	oxy-2-methylpropane on heating with HI pr	oduce	s:
	(A)	Methanol and sec-propyl iodide	(B)	Methyl iodide and tert-butyl alcohol
	(C)	Methyl iodide and isobutene	(D)	Methanol and tet-butyl iodide
73.	The lea	st acidic compound among the following is:		
	(A)	o-Nitrophenol	(B)	m-Nitrophenol
	(C)	p-Nitrophenol	(D)	Phenol

74.	An alkene C_7H_{14} on reductive ozonolysis gives an aldehyde with formula C_3H_6O and a ketone. The ketone is:						
	(A) 2-Butanone		(B)	2-Pentanone			
	(C) 3-Pentanone		(D)	Propanone			
75.	The increasing order of the rate of addition of HCN to the compounds i) Formaldehyde ii) Acetone iii) Acetophenone iv) benzophenone						
	(A) i < ii < iii < iv		(B)	iv < ii < iii < i			
	(C) $iv < iii < ii < i$		(D)	iv< i< ii< iii			
76.	76. The carboxylic acid that does not undergo Hell-Vohlard-Zelinsky reaction is						
	(A) CH ₃ COOH	-	(B)	(CH ₃) ₂ CHCOOH			
	(C) $CH_3CH_2CH_2$	СООН	(D)	(CH ₃) ₃ CCOOH			
77.	NaNO ₂ /	$\stackrel{\text{(HCl}}{\longrightarrow} X \stackrel{P/Br_2}{\longrightarrow} Y \stackrel{\text{NH}_3}{\longrightarrow}$	Z				
	- 22	(excess)	_				
	In the above sequen	ice, Z is:	(7)				
	(A) cyanoethane		(B)	ethanamide			
	(C) methanamin	e	(D)	etnanamine			
78.	The attachment of v value?	which of the following group at	para p	osition in aniline will raise the K _b			
	(A) $-SO_3H$		(B)	-OH			
	(C) –F		(D)	-Br			
79.	Which of the follow	ving is an example of globular	orotein	?			
	(A) myosin		(B)	collagen			
	(C) keratin		(D)	haemoglobin			
80.	Which one of the fo	llowing is synthesized in our b	ody by	y sun rays?			
	(A) Vitamin D	2	(B)	Vitamin B			
	(C) Vitamin K		(D)	Vitamin A			
81	Caprolactum is the	is the starting material for the s	vnthes	is of			
	(A) Nylon-6		(B)	Nylon6,6			
	(C) Terylene		(D)	Nylon 10			
82	The species which a	can serve as an initiator for cati	onic no	olymerization is			
02.	(A) Lithium alur	ninium hydride	(B)	Nitric acid			
	(C) Aluminium	chloride	(D)	BuLi			
82	Aspirin is on:						
05.	(A) analogsic		(B)	antipyretic			
	(C) antimalarial		(D)	Both analgesic and antipyretic			
0.4		o					
84.	The equivalent mas (A) Up 16 - 6 it - 4	s of iron in the reaction $2Fe + 3$	$\operatorname{SCl}_2 \rightarrow \mathbb{C}$	· 2FeCl ₃ 1S:			
	(A) Fiall OI Its at (C) Same as atom	onne mass	(D) (B)	One fourth of its atomic mass			
	(C) Same as atom	1110 111855	(D)	one routin of its atollite mass			

85.	Which o	f the following sets of quantum numbers is	s corre	ect for an electron in 4f subshell?
	(A) n=	=4, 1=3, m=4, s=+1/2	(B)	n=4, $l=3$, $m=-4$, $s=-1/2$
	(C) n ²	=4, l=3, m=+1, s=+1/2	(D)	n=3, $l=2$, $m=-2$, $s=+1/2$
86.	The corr	ect sequence of atomic radii is:		
	(A) N	la>Mg>Al>Si	(B)	Al>Si>Na>Mg
	(C) S	i>Al>Mg>Na	(D)	Si>Al>Na>Mg
87	In which	of the following the bond angle around the	ie cen	tral atom is maximum?
07.	(Δ) N	H _a	(B)	NH ⁺
	(Γ) P	Cl ₂	(D)	SC1
	(C) 1		(D)	5612
88.	Which o	f the following molecule does not exist		
	(A) N	F ₃	(B)	NF5
	(C) P	F ₅)	N ₂ H ₄
	(0) 1	- 5	(2)	
89.	If helium	n is allowed to expand in vacuum, it liberat	tes hea	at because
	(A) It	is an inert gas	(B)	It is an ideal gas
	(C) It	s critical temp. is low	(D)	It is a light gas
		I		6 6
90.	i) H ₂ (g) -	$+ 1/2O_2(g) \rightarrow H_2O(I) + x KJ$ ii) $H_2(g) +$	1/2O ₂	$(g) \rightarrow H_2O(g) + y KJ$; For the given two
	reactions	с, с		
	(A) x	> y	(B)	x < y
	(C) x	= y	(D)	$\mathbf{x} + \mathbf{y} = 0$
91.	If the bo	nd dissociation energies of XY, X_2 , Y_2 (all	diato	mic molecules) are in the ratio 1:1:0.5,
	respectiv	vely and $\Delta_{\rm f}$ H of XY is -200KJmol ⁻¹ , the box	nd dis	sociation energy of X_2 will be:
	(A) 4	00 KJmol ⁻¹	(B)	300 KJmol ⁻¹
	(C) 20	00 KJmol ⁻¹	(D)	100 KJmol^{-1}
02	What wi	Il ha the correct order of vanour programs	fwate	r other at 20^{0} C r
92.	among th	If be the correct order of vapour pressure of	n wale	int and other has minimum boiling point
	(Λ) W	Veter ether etherol	(\mathbf{D})	Water athenal athar
	(A) W		(D)	
	(C) E	ther <ethanoi<water< td=""><td>(D)</td><td>Etnanoi<etner<water< td=""></etner<water<></td></ethanoi<water<>	(D)	Etnanoi <etner<water< td=""></etner<water<>
93	Which o	f the following will occur if a 0.1M solution	on of a	weak acid is diluted to 0.01M at
<i>))</i> .	constant	temperature?	/// UI u	weak dold is dilated to 0.01111 at
	(A) []	H^+ will decrease to 0 001M	(B)	pH will decrease
	(Γ) (Γ) (Γ)	ercentage ionization will increase	(D)	K will increase
	(0) 1	ereenuge forization with mereuse	(D)	Ka win increase
94.	Which o	f the following species involves the transfe	er of 5	N _A electrons per mole of it ?
	(A) N	$\ln O_4^2 \rightarrow Mn O_4^2$	(B)	$MnO_4 \rightarrow Mn^{2+}$
	(C) M	$\ln O_4 \rightarrow MnO_2$	(D)	$\operatorname{CrO_4}^{\overline{2}} \rightarrow \operatorname{Cr}^{3+}$
	(2) 10		(2)	

95.	30-vo	lume hyderogen peroxide means:		
	(A)	30% H ₂ O ₂ by volume	(B)	$30g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } H_2O_2 \text{ solution containing } 1g solution $
	(C)	1 cm ³ of solution liberates 30 cm ³ of O_2 gas at STP	(D)	30 cm^3 of the solution contains one mole of H_2O_2
96.	The co	orrect sequence of covalent character is repre	sented	by:
	(A) (C)	LiCl <nacl<becl<sub>2 NaCl<licl< becl<sub="">2</licl<></nacl<becl<sub>	(B) (D)	BeCl ₂ <licl<nacl BeCl₂<nacl< licl<="" td=""></nacl<></licl<nacl
97.	Whick	h of the following is known as pyrene?		
	(A)	CCl ₄	(B)	CS ₂
	(C)	S_2Cl_2	(D)	
98.	The m	nost stable carbocation amongst the following	g is:	
	(A)	$(CH_3)_2CH^+$	(B)	Ph_3C^+
	(C)	CH ₃ CH ₂	(D)	$CH_2 - CH - CH_2$
99.	The m	nolecule that will have dipole moment is:		
	(A)	2,2-Dimethylpropane	(B)	Cis-2-Butene
	(C)	Trails-2-Dutene	(D)	2,2,3,5-1 ett alletti yloutaile
100.	Of the	e five isomeric hexanes, the isomer which car	n give 1	two monochlorinated compound is:
	(A)	2-Methylpentane	(B)	2,2-Dimethylbutane
	(C)	2,5-Dimetryloutane	(D)	n-nexane
101.	Cross	sing over occurs in meiosis I during:		
	(A)	Metaphase	(B)	Telophase
	(C)	Anaphanse	(D)	Pachytene
102.	Powe	er house of the cell:		
	(A)	Golgi body	(B)	Ribosomes
	(C)	Mitochondria	(D)	Lysosomes
103	Gene	tics is the study of		
1001	(A)	Heredity	(B)	Variation
	(C)	Both A and B	(D)	None of these
104	In cos	, linked inheritance, characters are needed	d from	n father to the grandsons through his
104.	(A)	Daughter	(B)	Son
	(C)	Both daughter and son	(D)	Any of them
105				
105.	Whic	h of the following bases is not present in	(\mathbf{P})	Thymine
	(A)	Adenine	(D) (D)	Cvtosine
	(-)		(2)	-)

106.	Mendel's principle of independent assortment c(A) Monohybrid cross(C) Both A and B	can be (B) (D)	demonstrated through: Dihybrid cross Any of them
107.	 On hydrolysis, maltose gives (A) glucose + glucose (C) glucose + fructose 	(B) (D)	glucose + lactose glucose + galactose
108.	A dipeptide has peptide bonds.(A) Three(C) Two	(B) (D)	One None of them
109.	Which vitamin can be synthesized by green plabut not by mammals?(A) Ascorbic acid(C) Thiamine	nts ar (B) (D)	nd various micro-oraganisms Pantothenic acid Retinol
110.	Bacterial cell wall is made up of:(A) Chitin(C) Peptidoglycan	(B) (D)	Cellulose All the above
111.	Plant viruses are generally of:(A) RNA(C) mRNA	(B) (D)	DNA tRNA
112.	Gram positive aerobic, filamentous bacteria wi(A) Algae(C) Bacteria	th hyp (B) (D)	bhae are known as: Actinomycetes Fungi
113.	Conversion of organic matter in to simple inorg(A) Immobilization(C) Co₂ fixation	ganic (B) (D)	forms is called: Mineralization Nitrification
114.	Excess carbon (> C/N ratio) leads to rate of dec (A) Slow (C) Optimum	compo (B) (D)	osition: Fast None
115.	 N₂ fixing cells of cyanobacteria are known as: (A) Cyst (C) Spores 	(B) (D)	Akinetes Heterocyst
116.	Livestock is important source of: (A) Milk (C) Manure	(B) (D)	Meat All of these

117.	Dairy cattle and buffalo can be called as:(A) Caprine(C) Bovine	(B) (D)	Ovine Equine
118.	Best breed of buffalo in India:(A) Nili Ravi(C) Surti	(B) (D)	Murrah Toda
119.	Best layer poultry strain is:(A) WLH(C) Karaknath	(B) (D)	Minorca Sutlez
120.	Normal birth weight (Kg) of healthy buffalo (A) 20 (C) 40	calf is: (B) (D)	30 50
121.	Number of teats in buffalo: (A) 2 (C) 6	(B) (D)	4 8
122.	Dry matter requirement (kg) of a cow weighin (A) 8 (C) 12	ng 400 (B) (D)	kg is: 10 14
123.	 Green fodder requirement of adult cattle (kg) (A) 30 (C) 50 	(B) (D)	40 60
124.	Which of the following crops is the best for h(A) Jowar(C) Berseem	ay mak (B) (D)	cing: Bajra Oat
125.	Normal body temperature of healthy poultry l (A) 37.0 (C) 107.0	oird (°H (B) (D)	³): 98.6 117.0
126.	ICAR-National Dairy Research Institute (ND(A) Karnal(C) Bareilly	RI) is l (B) (D)	ocated at: New Delhi Anand
127.	Excessive gas accumulation in rumen indicate(A) Impaction(C) Milk fever	es: (B) (D)	Bloat Foot and Mouth Disease

128.	Most fatal disease in farm animals is:(A) Foot and Mouth Disease(C) Rinderpest	(B) (D)	HS Anthrax
129.	Semen is stored in liquid nitrogen at (°C): (A) -79 (C) 79	(B) (D)	-196 196
130.	During Artificial Insemination (AI) semen sl(A) Vagina(C) Uterus	hould be (B) (D)	e deposited Cervix Fallopian tube
131.	 Seeds of groundnut contain about: (A) 25% oil and 50% protein (C) 40% oil and 40% protein 	(B) (D)	20% oil and 40% protein 50% oil and 25% protein
132.	Organic carbon is a measure of(A) Available nitrogen in soil(C) Excess of carbon in soil	(B) (D)	Available nutrient in soil Excess of iron in soil
133.	Which among the following element is consistent.(A) Calcium(C) Nitrogen	idered ir (B) (D)	nmobile in the plant Phosphorus Magnesium
134.	Which among the following is recommended(A) HD 2960(C) PBW 725	d variety (B) (D)	of durum wheat: WH 896 WH 711
135.	Recommended dose of nutrients for berseem (A) $10 \text{ kg N}, 28 \text{ kg P}_2\text{O}_5$ (C) $20 \text{ kg N}, 40 \text{ kg P}_2\text{O}_5$	(kg/acr (B) (D)	e) is: 40 kg N, 25 kg P ₂ O ₅ 20 kg N, 20 kg P ₂ O ₅
136.	Optimum row spacing for cotton is: (A) 50 cm (C) 67.5 cm	(B) (D)	60 cm 75 cm
137.	Optimum sowing time of summer moong in(A) March(C) First fortnight of April	the state (B) (D)	e is: Second fortnight of February End June-early July
138.	'White alkali' soil refers to:(A) Acid soil(C) Salina sodic soil	(B) (D)	Saline soil Sodic soil
139.	The exchange sodium percentage (ESP) of a (A) More than 15	lkali soi (B)	ls is always: Any value

140.	ICAR	-Central Arid Zone Research Institute is	s locat	ed at:
	(A)	Nagpur	(B)	Hyderabad
	(C)	New Delhi	(D)	Jodhpur
141.	India	is divided in to ecological zones.		
	(A)	12	(B)	10
	(C)	15	(D)	20
142.	Reco	mmended seed rate (kg/ha) of dhaincha o	or sunł	nemp for green manuring is:
	(A)	20	(B)	30
	(C)	40	(D)	50
143.	Reco	mmended seed rate for spring season mu	ngbea	n is
	(A)	15-20 kg per acre	(B)	25-30 kg per hectare
	(C)	15-20 kg per hectare	(D)	10 kg per hectare
144.	For tr	ansplanting of pearl millet (bajra) in Har	yana,	optimum age of seedlings is:
	(A)	Two weeks	(B)	Three weeks
	(C)	Four weeks	(D)	Five weeks
145.	Blind	tillage refers to:		
	(A)	Summer ploughing	(B)	Primary tillage
	(C)	Hoeing before germination	(D)	Hoeing in standing crop rows
146.	Flame	e photometer is used for the determinatio	n of:	
	(A)	Nitrogen	(B)	Phosphorus
	(C)	Potassium	(D)	Boron
147.	Tetra	zolium test is conducted to test the:		
	(A)	Physical purity of seed	(B)	Percentage of weed seeds
	(C)	Viability of seed	(D)	Seed germination
148.	World	d Food Day is celebrated on:	<u> </u>	
	(A)	5 June	(B)	20 June
	(C)	28 February	(D)	16 October
149.	Whic	h among the following is the best and ch	eapest	method of weed control:
	(A)	Cultural measures	(B)	Herbicide based weed control
	(C)	Biological control	(D)	Preventive measures
150.	Black	soils in India belong to soil order:		· · · ·
	(A)	Alfisol	(B)	Inceptisol
	(C)	vertisol	(D)	UXISOI
151.	Whic	h among the following crop has epigeal g	germir	nation?
	(A)	Sunilower	(B)	Unickpea
	(C)	Kice	(D)	Pearl millet

152.	Which	h fraction of soil organic matter is soluble	e in bo	oth alkali and acid:
	(A)	Humic acid	(B)	Fulvic acid
	(C)	Hymatomelonic acid	(D)	Humin acid
153.	Nitro (A) (C)	gen use efficiency in rice can be increased Delayed application of N Application of S-coated urea	l by: (B) (D)	Use of biofertilizers Application of blue green algae
154.	Which	h stage of sugarcane is most critical for in	rigatio	on?
	(A)	Germination	(B)	Formative stage
	(C)	Grand growth phase	(D)	Ripening stage
155.	The la (A) (C)	argest producer of rapeseed-mustard in In Haryana Rajasthan	dia is (B) (D)	Uttar Pradesh Gujarat
156.	The to (A) (C)	erm Functional or Metabolic Nutrients wa JV Leibig DI Arnon	(B) (D)	posed by: DJ Nicholas Mosanoba Fukuoka
157.	Botar (A) (C)	iical name of sunnhemp is Sesbania aculeata Carthamus tinctorium	(B) (D)	Trifolium alexandrinum Crotolaria juncea
158.	The u	pper limit of soil moisture available for p	lant g	rowth is:
	(A)	PWP (15 bars)	(B)	Hygroscopic coefficient
	(C)	Field capacity (1/3 bars)	(D)	Gravitational potential
159.	For w	hich fertilizer, India is fully dependent or	n impo	ort?
	(A)	N fertilizers	(B)	K fertilizers
	(C)	P fertilizers	(D)	S fertilizers
160.	Agros	stology is the branch of Agronomy that de	eals w	ith cultivation of:
	(A)	Aromatic and medicinal crops	(B)	Non edible oilseeds
	(C)	Fodder crops	(D)	Green manure crops
161.	With	excessive use of nitrogen in sugarcane, th	e sug	ar content in juice is:
	(A)	Increased	(B)	Remains same
	(C)	Decreased	(D)	Not affected
162.	Bacte	ria responsible for nitrogen fixation in so	ybean	is
	(A)	<i>Rhizobium leguminosarum</i>	(B)	Rhizobium japonicum
	(C)	<i>Rhizobium phaseoli</i>	(D)	Rhizobium trifoli
163.	The n (A) (C)	nost critical stage of irrigation in maize is Silking stage Grain development stage	: (B) (D)	Tasseling stage Dough stage
164.	Nippi (A) (C)	ng in chickpea is beneficial to: Promote branching Check excessive vegetative growth	(B) (D)	Promote flowering Improve seed setting

165.	Quantity of urea required by (A) 130	wheat for one acre at a (B)	dose of 125 kg per hectare is: 90
	(C) 110	(D)	275
166.	Congress grass (Parthenium	hysterophorus) can be	controlled by insect:
	(A) Chrysoperla	(B)	Dactylopius tomentosus
	(C) Zygogramma bicolora	<i>ta</i> (D)	Bacillus thuringiensis
167.	Application of organic mater leads to:	ial with wider C:N ratio	o (usually more than (20:1) to soil
	(A) N immobilization	(B)	N leaching
	(C) Immediate release in N	N (D)	N mineralization
168.	Heavy shedding of buds and	bolls in cotton occurs d	lue to:
	(A) Deficiency of N in soil	l (B)	Water stress at bud formation stage
	(C) Deficiency of P in soil	(D)	Excess of N is soil
169.	'Whip tail' is brassica is due	to the deficiency of:	
	(A) Calcium	(B)	Magnesium
	(C) Manganese	(D)	Zinc
170	Which kind of soil mineralog	w has the highest 'cati	on exchange canacity':
1,01	(A) Kaolinite	(B)	Illite
	(C) Montmorillonite	(D)	Humus
171	Optimum row spacing for for	dder crops is:	
1/1.	(Δ) 30 cm	(B)	60 cm
	(C) 45 cm	(D)	75 cm
172	The balance sheet of a dairy	form ronrogant:	
1/2.	(Λ) A sets	(B)	Liphilities
	(\mathbf{C}) Both (\mathbf{A}) and (\mathbf{B})	(D)	None of these
172	Main lineitation in lasening for		Tione of these
1/3.	(A) Illitoraay	rm records in India is:	Noture of forming
	(A) Initelacy (C) $\operatorname{Pig}_{\text{size}}$ of holding	(D)	None of these
	(C) Big size of holding	(D)	None of these
174.	Profit and loss account is a ty	/pe of:	
	(A) Personal account	(B)	Real account
	(C) Nominal account	(D)	None of these
175.	Which is the most prominent	book for keeping farm	records and accounts:
	(A) Journal	(B)	Ledger
	(C) Cash book	(D)	Purchase register
176.	The list of all the physical proposed point of time is known as:	operty of a business alo	ng with their values at a specific
	(A) Assets	(B)	Liabilities
	(C) Farm inventory	(D)	None of these
177.	The decline in value of assets known as:	s due to usage, accident	al damage and time obsolescence is
	(A) Appreciation	(B)	Depreciation
	(C) Interest	(D)	None of these

178.	Which of the following is not a component of farm business: (A) Capital (B) Land		
	(C) Market	(D)	Labour and management
179.	Queen of Fruits is: (A) Mango (C) Litchi	(B) (D)	Apple Banana
180.	Low chilling pears are trained by:(A) Espaliar system(C) Modified leader system	(B) (D)	Centre leader system Y trellies system
181.	Wind break established in the orchards is of:(A) Jamun(C) Karonda	(B) (D)	Jhatti Khatti Galgal
182.	Strawberry is propagated through:(A) Stolon(C) Crown	(B) (D)	Runners Suckers
183.	Epicotyl grafting is commonly done in:(A) Guava(C) Pear	(B) (D)	Litchi Mango
184.	Daisy is cross between:(A)Fortune x Fremont mandarin(C) <u>Citrus grandis</u> Osbeck <u>Paradisi</u> Macf.	(B) (D)	King x Willow leaf Sweet orange x <i>C trifoliata</i>
185.	Arunika is cross between:(A) Dashehari x Neelum(C) Amrapali x Vanraj	(B) (D)	Neelum x Dashehari Sensation x Amrapali
186.	<i>Phytophthora</i> is controlled with the application of(A) Ridomil(C) c. M 45	(B) (D)	Bayleton All of these
187.	Yellow pigment in papaya fruit is:(A) Xanthophyll(C) Lycopene	(B) (D)	Carotene Caricaxanthin
188.	Which garden is also referred as 'Nature in Minia(A) Japanese(C) English	ture: (B) (D)	Mughals Persian
189.	 Tree with drooping inflorescence is: (A) Jacaranda mimosaefolia (C) Bassia latifolia 	(B) (D)	Salyx baylonica Kigelia pinnata
190.	Red scarlet is a cultivar of:(A) Radish(C) Onion	(B) (D)	Carrot Turnip

191.	Whick (A)	h of the following is a climacteric fruit? Muskmelon	(B)	Tomato
	(C)	Both A and B	(D)	None of these
192.	Sun s (A) (C)	calding incidence usually occurs in: Brinjal Muskmelon	(B) (D)	Tomato Cauliflower
193.	Sex e (A)	xpression in pointed gourd is: Monoecious	(B)	Andromonoecious
	(C)	Dioecious	(D)	Hermaphrodite
194.	Whick (A)	h of the following soil is most suitable for veg Sandy	getable (B)	es? Sandy Loam
	(C)	Clay loam	(d)	Clay
195.	The s (A)	eed required for one hectare sowing of carrot 1-2 kg	is (B)	10-15 kg
	(C)	4-5 kg	(D)	15-20 kg
196.	The main reason for blanching of fruits and vegetables is:			
	(A) (C)	To make them soft To make the products taste better	(B) (D)	To inactivate enzymes For long term preservation of products
197.	What	is Canning		
	(A)	Placing of foods in sealed metal containers	(B)	Storage of foods in hermetically sealed containers
	(C)	Placing cans in retorts	(D)	None of these
198.	What	is Brine		
	(A) (C)	A solution of sugar and water A solution of vinegar and water	(B) (D)	A solution of salt and water An additive used in food processing
199.	The n	nost economical way of drying fruits and veg	etables	s is
	(A) (C)	Solar drying Mechanical drying	(B) (D)	Oven drying None of these
200.	Prese	rvative used in tomato Ketchup is		
	(A) (C)	Potassium Metabisulphite Citric acid	(B) (D)	Sodium Benzoate None of these

Sr.	Question
No.	

Among the following, the most stable complex is 1. (B) $[Fe (NH_3)_6]^{3+}$ (D) $[Fe (Cl)_6]^{3-}$ $[Fe (H_2O)_6]^{34}$ (A) $[Fe (C_2O_4)_3]^{3-1}$ (C) 2. Which is the correct coordination number (C.N) and oxidation number (O.N) of the transition metal atom in $[Co(NH_3)_2(H_2O)_2Cl_2]^+$? (A) C.N=3, O.N=+1 (B) C.N=4, O.N=+2C.N=6, O.N=+1 (D) C.N=6, O.N=+3(C) 3. In a solid, oxide ions are arranged in ccp, cations A occupy one sixth of the tetrahedral voids and cation B occupy one third of the octahedral voids. The formula of the solid is: (A) ABO₃ (B) A₃BO AB₃O (C) (D) $A_3B_3O_3$ 4. On mixing acetone to methanol some of the hydrogen bonds between methanol molecules break. Which of the following statements is correct about the above process? At specific composition methanol acetone At specific composition methanol (A) **(B)** mixture will form minimum boiling acetone mixture will form maximum azeotrope and show positive deviation boiling azeotrope and show positive deviation from Raoult's law from Raoult's law (C) At specific composition methanole (D) At specific composition methanole acetone mixture will form minimum acetone mixture will form maximum boiling azeotrope and show negative boiling azeotrope and show negative deviation from Raoult's law deviation from Raoult's law 5. $K_{\rm H}$ value for argon, carbon dioxide, formaldehyde and methane gases are 40.39, 1.67, 1.83 X 10⁻⁵ and 0.413, respectively. The correct arrangement of these gases in the order of their increasing solubility is: formaldehyde< carbon dioxide (A) formaldehyde<methane<carbon (B) dioxide<argon <methane<argon argon<carbon dioxide< argon <methane <carbon dioxide (C) (D) methane<formaldehyde < formaldehyde The number of faradays of electricity required for electrolytic conversion of the mole of 6. nitrobenzene to aniline is: (A) 3F (B) 4F 6F 5F (C) (D) 7. The positive value of the standard electrode potential of Ag^+/Ag indicates that: (A) This redox couple is a stronger reducing (B) This redox couple is a stronger agent than H^+/H_2 couple oxidizing agent than H^+/H_2 couple (D) Ag can displace H_2 from base Ag can displace H₂ from acid (C) 8. Milk is refrigerated in order to slow the rate of decomposition by bacterial action. The decrease in reaction rate is due to: A decrease in \triangle H for the reaction A decrease in surface area (A) **(B)** A decrease in the fraction of particles The introduction of an alternative (C) (D) pathway with greater activation possessing sufficient energy energy.

9.	Which of the following statements is not correct?	
	(A) The rate of a reaction decreases with passage of time as concentration of	(B) The instantaneous rate a reaction is same at any time during the reaction
	 (C) For a zero order reaction the concentration of reactants remains changed with passage of time 	(D) The rate of a reaction decreases with increase in concentration of reactant (s)
10.	Which of the following gases shows the lowest ad	sorption per gram of charcoal? The critical
	(A) H_2 (33K) (C) SO_2 (630K)	(B) $CH_4(190K)$ (D) $CO_2(304K)$
11.	 Freundlich adsorption isotherm is given by the exp statements are false? i. When 1/n=0, the adsorption is indeper ii. When n=0, the plot of x/m vs p graph iii. When 1/n=0, the adsorption is directly iv. When n=0, plot of x/m vs p is a curve 	pression $x/m=kp^{1/n}$. Which of the following ndent of pressure. is a line parallel to x axis. y proportional to pressure.
	(A) i and ii	(B) ii and iv
12.	In the extraction of chlorine by electrolysis of an a the following statements are true? i. $\triangle G^0$ for the overall reaction is positiviti. ii. $\triangle G^0$ for the overall reaction is negative iii. E^0 for the overall reaction is positive iv. E^0 for the overall reaction is negative (A) i and iv (C) ii and iii	aqueous solution of sodium chloride, which of ve ive (B) i and iii (D) iii and iv
13.	Which of the following pairs of ions are isoelectro (A) NO_2^+ and NO_3^- (C) XeO_3^{-2-} and PCl_3	(B) ClO_3^- and ICl_4^- (D) ClO_3^- and SO_3^{2-}
14.	 Which of the following hydrides is the strongest re (A) NH₃ (C) AsH₃ 	educing agent? (B) PH ₃ (D) SbH ₃
15.	Consider the reactions, i. $Zn + Conc. HNO_3 (hot) \longrightarrow Zn (N)$ ii. $Zn + dil. HNO_3 (cold) \longrightarrow Zn (N)$ Compounds X and Y are, respectively (A) N_2O , NO (C) N_2 , N_2O	$(NO_3)_2 + X + H_2O$ $NO_3)_2 + Y + H_2O$ $(B) NO_2, NO_2$ $(D) NO_2, NO$
16.	When KMnO ₄ acts as an oxidizing agent in weakly manganese decreases by: (A) 1	y alkaline medium, the oxidation number of (B) 2

17.	Acidified potassium dichromate solution turns green when Na ₂ SO ₃ is added to it due to the formation of:					
	(A) (C)	CrSO ₄ CrO ₄ ²⁻	(B) (D)	$Cr_2(SO_4)_3$ $Cr_2(SO_3)_3$		
18.	The de Which number (A)	The d-electron configurations of Cr^{2+} , Mn^{2+} , Fe^{2+} and Co^{2+} are d^4 , d^5 , d^6 and d^7 , respectively. Which one of the following complexes will exhibit minimum paramagnetic behavior? (atomic numbers of $Cr=24$, $Mn=25$, $Fe=26$, $Co=27$) (A) = [Cr(H-O)]^{2+} (B) = [Mn(H-O)]^{2+}				
	(C)	$[Fe(H_2O)_6]^{2+}$	(D)	$[Co(H_2O)_6]^{2+}$		
19.	When is:	2-Bromopentane is heated with potassium et	hoxide	e in ethanol, the major product obtained		
	(A) (C)	2-Ethoxypentane Cis-Pent-2-ene	(B) (D)	Pent-1-ene Trans-Pent-2-ene		
20.	Which (A) (C)	n of the following undergoes nucleophilic sub Chloroethane Chlorobenzene	(B) (D)	on exclusively by S _N ¹ mechnism? Isopropyl chloride Benzyl chloride		
21.	The n (A) (C)	umber of possible stereoisomers for CH ₃ CH= 8 4	CHCH (B) (D)	H ₂ CH(Br)CH ₃ is: 2 6		
22.	2-Met (A) (C)	hoxy-2-methylpropane on heating with HI pr Methanol and sec-propyl iodide Methyl iodide and isobutene	oduce (B) (D)	s: Methyl iodide and tert-butyl alcohol Methanol and tet-butyl iodide		
23.	The le (A) (C)	east acidic compound among the following is: o-Nitrophenol p-Nitrophenol	(B) (D)	m-Nitrophenol Phenol		
24.	An all The k	kene C_7H_{14} on reductive ozonolysis gives an a etone is:	aldehy	de with formula C_3H_6O and a ketone.		
	(A) (C)	2-Butanone 3-Pentanone	(B) (D)	2-Pentanone Propanone		
25.	The in Aceto	ncreasing order of the rate of addition of HCN ne iii) Acetophenone iv) benzophenone	to the	e compounds i) Formaldehyde ii)		
	(A) (C)	i <ii <="" iii<="" iv<br="">iv<iii< i<="" ii<="" td=""><td>(B) (D)</td><td>iv< ii< iii < i iv< i< ii< iii</td></iii<></ii>	(B) (D)	iv< ii< iii < i iv< i< ii< iii		
26.	The ca (A) (C)	arboxylic acid that does not undergo Hell-Vo CH ₃ COOH CH ₃ CH ₂ CH ₂ COOH	hlard-Z (B) (D)	Zelinsky reaction is: (CH ₃) ₂ CHCOOH (CH ₃) ₃ CCOOH		
27.	C ₂ H ₅ N	$NH_2 \xrightarrow{NaNO_2/HCl} X \xrightarrow{P/Br_2} Y \xrightarrow{NH_3} (excess)$	Z			
	In the	above sequence, Z is:	(\mathbf{D})	athonomida		
	(A) (C)	methanamine	(D)	Ethanamine		

28.	The attachment of which of the following group at para position in aniline will raise the K _b value?				
	$ \begin{array}{ll} (A) & -SO_3H \\ (C) & -F \end{array} $	(B) -OH (D) -Br			
29.	Which of the following is an example of globular(A) myosin(C) keratin	protein? (B) collagen (D) haemoglobin			
30.	Which one of the following is synthesized in our(A) Vitamin D(C) Vitamin K	body by sun rays? (B) Vitamin B (D) Vitamin A			
31.	Caprolactum is the is the starting material for the	synthesis of			
	(A) Nylon-6(C) Terylene	(B) Nylon6,6(D) Nylon 10			
32.	The species which can serve as an initiator for cat(A) Lithium aluminium hydride(C) Aluminium chloride	ionic polymerization is (B) Nitric acid (D) BuLi			
33.	Aspirin is an: (A) analgesic (C) antimalarial	(B) antipyretic(D) Both analgesic and antipyretic			
34.	 The equivalent mass of iron in the reaction 2Fe + (A) Half of its atomic mass (C) Same as atomic mass 	$3Cl_2 \rightarrow 2FeCl_3$ is: (B) One third of its atomic mass (D) One fourth of its atomic mass			
35.	Which of the following sets of quantum numbers (A) $n=4$, $l=3$, $m=4$, $s=+1/2$ (C) $n=4$, $l=3$, $m=+1$, $s=+1/2$	is correct for an electron in 4f subshell? (B) $n=4, l=3, m=-4, s=-1/2$ (D) $n=3, l=2, m=-2, s=+1/2$			
36.	The correct sequence of atomic radii is: (A) Na>Mg>Al>Si (C) Si>Al>Mg>Na	(B) Al>Si>Na>Mg(D) Si>Al>Na>Mg			
37.	In which of the following, the bond angle around (A) NH_3 (C) PCl_3	the central atom is maximum? (B) NH_4^+ (D) SCl_2			
38.		(B) NF_5 (D) N_2H_4			
39.	If helium is allowed to expand in vacuum, it liber(A) It is an inert gas(C) Its critical temp. is low	ates heat because(B) It is an ideal gas(D) It is a light gas			
40.	i) $H_2(g) + 1/2O_2(g) \rightarrow H_2O(I) + x KJ$ ii) $H_2(g) \rightarrow H_2O(I) + x KJ$ iii) $H_2(g) \rightarrow H_2O(I) + x KJ$ reactions, (A) $x > y$ (C) $x = y$	+ $1/2O_2(g) \rightarrow H_2O(g) + y$ KJ; For the given two (B) $x < y$ (D) $x + y = 0$			

41.	If the l respec (A) (C)	bond dissociation energies of XY, X_2 , Y_2 (all tively and $\Delta_f H$ of XY is -200KJmol ⁻¹ , the bor 400 KJmol ⁻¹ 200 KJmol ⁻¹	diaton nd diss (B) (D)	nic molecules) are in the ratio 1:1:0.5, sociation energy of X_2 will be: 300 KJmol ⁻¹ 100 KJmol ⁻¹	
42.	What will be the correct order of vapour pressure of water, ethanol and ether at 30 ^o C? Given th among these compounds water has maximum boiling point and ether has minimum boiling point				
	(A)	Water <ether<ethanol< td=""><td>(B)</td><td>Water<ethanol<ether< td=""></ethanol<ether<></td></ether<ethanol<>	(B)	Water <ethanol<ether< td=""></ethanol<ether<>	
	(C)	Ether <ethanol<water< td=""><td>(D)</td><td>Ethanol<ether<water< td=""></ether<water<></td></ethanol<water<>	(D)	Ethanol <ether<water< td=""></ether<water<>	
43.	Which consta (A)	of the following will occur if a 0.1M solution t temperature? $[H^+]$ will decrease to 0.001M	n of a (B)	weak acid is diluted to 0.01M at pH will decrease	
	(C)	Percentage ionization will increase	(D)	K _a will increase	
44.	Which	of the following species involves the transfe	r of 5]	N _A electrons per mole of it ?	
	(A)	$MnO_4^2 \rightarrow MnO_4^-$	(B)	$MnO_4^- \rightarrow Mn^{2+}$	
45.	(C) 30-vol	ume hyderogen peroxide means:	(D)	$ClO_4 \rightarrow Cl$	
	(A)	$30\% H_2O_2$ by volume	(B)	$30g$ of H_2O_2 solution containing 1g of it	
	(C)	1 cm ³ of solution liberates 30 cm ³ of O_2 gas at STP	(D)	30 cm^3 of the solution contains one mole of H_2O_2	
46.	The co	prrect sequence of covalent character is repres	sented	by:	
	(A) (C)	LiCl <nacl<becl<sub>2 NaCl<licl< becl<sub="">2</licl<></nacl<becl<sub>	(B) (D)	BeCl ₂ <licl<nacl BeCl₂<nacl<licl< td=""></nacl<licl<></licl<nacl 	
47.	Which	of the following is known as pyrene?			
	(A) (C)	CCl_4 S ₂ Cl ₂	(B) (D)	CS ₂ Solid CO ₂	
48.	The m	ost stable carbocation amongst the following	is:	N. C ⁺	
	(A) (C)	$(CH_3)_2CH^2$ $CH_2CH_2^+$	(B)	Ph_3C^+ $CH_2 = CH_2CH_2^+$	
10	(C) The m	olecule that will have dipole moment is:	(D)		
49.	(A) (C)	2,2-Dimethylpropane Trans-2-Butene	(B) (D)	Cis-2-Butene 2,2,3,3-Tetramethylbutane	
50.	Of the (A) (C)	five isomeric hexanes, the isomer which can 2-Methylpentane 2,3-Dimethylbutane	give (B) (D)	wo monochlorinated compound is: 2,2-Dimethylbutane n-Hexane	
51.	Cross (A) (C)	ing over occurs in meiosis I during: Metaphase Anaphahse	(B) (D)	Telophase Pachytene	
52	Dowe	r house of the call:			
32.	rowei (A)	Golgi body	(B)	Ribosomes	
	(C)	Mitochondria	(D)	Lysosomes	

53.	Gene	tics is the study of:		
	(A)	Heredity	(B)	Variation
	(C)	Both A and B	(D)	None of these
54.	In sex	k -linked inheritance, characters are passe	d fron	n father to the grandsons through his:
	(A)	Daughter	(B)	Son
	(C)	Both daughter and son	(D)	Any of them
55.	Whic	h of the following bases is not present in	RNA:	
	(A)	Uracil	(B)	Thymine
	(C)	Adenine	(D)	Cytosine
56.	Mend	lel's principle of independent assortment of	can be	demonstrated through:
	(A)	Monohybrid cross	(B)	Dihybrid cross
	(C)	Both A and B	(D)	Any of them
57.	On hy	ydrolysis, maltose gives		
	(A)	glucose + glucose	(B)	glucose + lactose
	(C)	glucose + fructose	(D)	glucose + galactose
58.	A dip	eptide has peptide bonds.		
	(A)	Three	(B)	One
	(C)	Two	(D)	None of them
59.	Whic but ne	h vitamin can be synthesized by green pla ot by mammals?	ants ar	nd various micro-oraganisms
	(A)	Ascorbic acid	(B)	Pantothenic acid
	(C)	Thiamine	(D)	Retinol
60.	Bacte	rial cell wall is made up of:		
	(A)	Chitin	(B)	Cellulose
	(C)	Peptidoglycan	(D)	All the above
61.	Plant	viruses are generally of:		
	(A)	RNA	(B)	DNA
	(C)	mRNA	(D)	tRNA
62.	Gram	positive aerobic, filamentous bacteria wi	th hyp	bhae are known as:
	(A)	Algae	(B)	Actinomycetes
	(C)	Bacteria	(D)	Fungi
63.	Conv	ersion of organic matter in to simple inor	ganic	forms is called:
	(A)	Immobilization	(B)	Mineralization
	(C)	Co ₂ fixation	(D)	Nitrification

64.	Exces	s carbon (> C/N ratio) leads to rate of dec	C/N ratio) leads to rate of decomposition:				
	(A)	Slow	(B)	Fast			
	(C)	Optimum	(D)	None			
65.	N ₂ fix	ing cells of cyanobacteria are known as:					
	(A)	Cyst	(B)	Akinetes			
	(C)	Spores	(D)	Heterocyst			
66.	Livest	ock is important source of:					
	(A)	Milk	(B)	Meat			
	(C)	Manure	(D)	All of these			
67.	Dairy	cattle and buffalo can be called as:					
	(A)	Caprine	(B)	Ovine			
	(C)	Bovine	(D)	Equine			
68.	Best b	reed of buffalo in India:					
	(A)	Nili Ravi	(B)	Murrah			
	(C)	Surti	(D)	Toda			
69.	Best la	ayer poultry strain is:					
	(A)	WLH	(B)	Minorca			
	(C)	Karaknath	(D)	Sutlez			
70.	Norma	al birth weight (Kg) of healthy buffalo ca	alf is:				
	(A)	20	(B)	30			
	(C)	40	(D)	50			
71.	Numb	er of teats in buffalo:					
	(A)	2	(B)	4			
	(C)	6	(D)	8			
72.	Dry m	atter requirement (kg) of a cow weighing	g 400	kg is:			
	(A)	8	(B)	10			
	(C)	12	(D)	14			
73.	Green	fodder requirement of adult cattle (kg):					
	(A)	30	(B)	40			
	(C)	50	(D)	60			
74.	Which	n of the following crops is the best for ha	y mak	ing:			
	(A)	Jowar	(B)	Bajra			
		D	(\mathbf{D})	0-4			

75.	Norm	al body temperature of healthy poultry bi	ird (°F):
	(A)	37.0	(B)	98.6
	(C)	107.0	(D)	117.0
76.	ICAR	-National Dairy Research Institute (NDR	(B)	ocated at:
	(A)	Karnal	(B)	New Delhi
	(C)	Bareilly	(D)	Anand
77.	Exces (A) (C)	ssive gas accumulation in rumen indicates Impaction Milk fever	s: (B) (D)	Bloat Foot and Mouth Disease
78.	Most (A) (C)	fatal disease in farm animals is: Foot and Mouth Disease Rinderpest	(B) (D)	HS Anthrax
79.	Seme (A) (C)	n is stored in liquid nitrogen at (°C): -79 79	(B) (D)	-196 196
80.	Durin	g Artificial Insemination (AI) semen sho	uld be	deposited
	(A)	Vagina	(B)	Cervix
	(C)	Uterus	(D)	Fallopian tube
81.	Seeds (A) (C)	of groundnut contain about: 25% oil and 50% protein 40% oil and 40% protein	(B) (D)	20% oil and 40% protein 50% oil and 25% protein
82.	Orgar (A) (C)	nic carbon is a measure of Available nitrogen in soil Excess of carbon in soil	(B) (D)	Available nutrient in soil Excess of iron in soil
83.	Whick	h among the following element is conside	ered in	nmobile in the plant
	(A)	Calcium	(B)	Phosphorus
	(C)	Nitrogen	(D)	Magnesium
84.	Whick	h among the following is recommended v	variety	of durum wheat:
	(A)	HD 2960	(B)	WH 896
	(C)	PBW 725	(D)	WH 711
85.	Recor	nmended dose of nutrients for berseem (1	kg/acro	e) is:
	(A)	10 kg N, 28 kg P ₂ O ₅	(B)	40 kg N, 25 kg P ₂ O ₅
	(C)	20 kg N, 40 kg P ₂ O ₅	(D)	20 kg N, 20 kg P ₂ O ₅
86.	Optin (A) (C)	num row spacing for cotton is: 50 cm 67.5 cm	(B) (D)	60 cm 75 cm

87.	Optimum sowing time of summer moong in the state is:				
	(Å)	March	(B)	Second fortnight of February	
	(C)	First fortnight of April	(D)	End June-early July	
88.	'Whit	e alkali' soil refers to:			
	(A)	Acid soil	(B)	Saline soil	
	(C)	Salina sodic soil	(D)	Sodic soil	
80	T 1		1	1 • 1	
89.	I he e (Λ)	xchange sodium percentage (ESP) of alka	(\mathbf{D})	Is is always:	
	(A)	Nore than 15	(\mathbf{B})	Any value	
	(C)	Less than 15	(D)	Less than 7.5	
90.	ICAR	-Central Arid Zone Research Institute is	locate	ed at:	
	(A)	Nagpur	(B)	Hyderabad	
	(C)	New Delhi	(D)	Jodhpur	
91.	India	is divided in to ecological zones			
	(A)	12	(B)	10	
	(C)	15	(D)	20	
02	D		1.		
92.	Kecol	nmended seed rate (kg/na) of dhaincha of	(\mathbf{D})	20	
	(A)	20	(\mathbf{B})	50 50	
	(C)	40	(D)	50	
93.	Reco	nmended seed rate for spring season mun	igbeai	n is	
	(A)	15-20 kg per acre	(B)	25-30 kg per hectare	
	(C)	15-20 kg per hectare	(D)	10 kg per hectare	
94.	For tr	ansplanting of pearl millet (bajra) in Hary	vana, o	optimum age of seedlings is:	
	(A)	Two weeks	(B)	Three weeks	
	(C)	Four weeks	(D)	Five weeks	
05	Dlind	tillaga rafara ta:			
95.	(Λ)	Summer ploughing	(\mathbf{R})	Primary tillage	
	(\mathbf{A})	Hoeing before germination	(\mathbf{D})	Hoeing in standing crop rows	
	(C)	Hoenig before germination	(D)	The fing in standing crop rows	
96.	Flame	e photometer is used for the determination	n of:		
	(A)	Nitrogen	(B)	Phosphorus	
	(C)	Potassium	(D)	Boron	
97.	Tetra	zolium test is conducted to test the:			
	(A)	Physical purity of seed	(B)	Percentage of weed seeds	
	(C)	Viability of seed	(D)	Seed germination	
98.	World	l Food Day is celebrated on:			
	(A)	5 June	(B)	20 June	
	(C)	28 February)	16 October	

99. Which among the following is the best and cheapest method of w			method of weed control:			
	(A)	Cultural measures	(B)	Herbicide based weed control		
	(C)	Biological control	(D)	Preventive measures		
100	Black	soils in India belong to soil order.				
100.	(A)	Alfisol	(B)	Incentisol		
	(Γ)	Vertisol	(D)	Oxisol		
	(C)	Vertisor	(D)	CAISOI		
101.	Whic	Which among the following crop has epigeal germination?				
	(A)	Sunflower	(B)	Chickpea		
	(C)	Rice	(D)	Pearl millet		
102.	Whic	h fraction of soil organic matter is soluble	e in bo	oth alkali and acid:		
	(A)	Humic acid	(B)	Fulvic acid		
	(C)	Hymatomelonic acid	(D)	Humin acid		
103.	Nitro	gen use efficiency in rice can be increase	d bv [.]			
	(A)	Delayed application of N	(B)	Use of biofertilizers		
	(C)	Application of S-coated urea	(D)	Application of blue green algae		
104	Whield					
104.	winc.	Commination	(D)	Eormativa staga		
	(\mathbf{A})	Grand growth phase	(\mathbf{D})	Pinoning stage		
	(C)	Grand growth phase	(D)	Ripening stage		
105.	The la	argest producer of rapeseed-mustard in Ir	idia is			
	(A)	Haryana	(B)	Uttar Pradesh		
	(C)	Rajasthan	(D)	Gujarat		
106.	The te	erm Functional or Metabolic Nutrients wa	as pro	posed by:		
	(A)	JV Leibig	(B)	DJ Nicholas		
	(C)	DI Arnon	(D)	Mosanoba Fukuoka		
107.	Botan	nical name of sunnhemp is				
	(A)	Sesbania aculeata	(B)	Trifolium alexandrinum		
	(C)	Carthamus tinctorium	(D)	Crotolaria juncea		
108.	The u	pper limit of soil moisture available for p	olant g	rowth is:		
	(A)	PWP (15 bars)	(B)	Hygroscopic coefficient		
	(C)	Field capacity (1/3 bars)	(D)	Gravitational potential		
109.	For w	which fertilizer. India is fully dependent of	n impo	ort?		
	(A)	N fertilizers	(B)	K fertilizers		
	(C)	P fertilizers	(D)	S fertilizers		
110	A ~~~~	to logy is the branch of A area area that 1	aala	ith gultivation of		
110.	Agros	A remetie and modified arous	eals W	Non adible ailseade		
	(A)	Fodder grops	(D)	Groop manura grops		
	(\mathbf{U})	rouder crops	(D)	Green manure crops		

111.	With (A) (C)	excessive use of nitrogen in sugarcane, th Increased Decreased	e sug (B) (D)	ar content in juice is: Remains same Not affected
112.	Bacte (A) (C)	ria responsible for nitrogen fixation in sog <i>Rhizobium leguminosarum</i> <i>Rhizobium phaseoli</i>	ybean (B) (D)	is Rhizobium japonicum Rhizobium trifoli
113.	The n (A) (C)	nost critical stage of irrigation in maize is: Silking stage Grain development stage	: (B) (D)	Tasseling stage Dough stage
114.	Nippi (A) (C)	ng in chickpea is beneficial to: Promote branching Check excessive vegetative growth	(B) (D)	Promote flowering Improve seed setting
115.	Quant (A) (C)	tity of urea required by wheat for one acre 130 110	e at a (B) (D)	dose of 125 kg per hectare is: 90 275
116.	Congr (A) (C)	ress grass (Parthenium hysterophorus) ca Chrysoperla Zygogramma bicolorata	n be c (B) (D)	controlled by insect: Dactylopius tomentosus Bacillus thuringiensis
117.	Appli leads (A) (C)	cation of organic material with wider C:N to: N immobilization Immediate release in N	(B) (D)	N leaching N mineralization
118.	Heavy (A) (C)	y shedding of buds and bolls in cotton occ Deficiency of N in soil Deficiency of P in soil	curs d (B) (D)	ue to: Water stress at bud formation stage Excess of N is soil
119.	'Whip (A) (C)	p tail' is brassica is due to the deficiency of Calcium Manganese	of: (B) (D)	Magnesium Zinc
120.	Whick (A) (C)	h kind of soil mineralogy has the highest Kaolinite Montmorillonite	'catio(B)(D)	on exchange capacity': Illite Humus
121.	Optin (A) (C)	num row spacing for fodder crops is: 30 cm 45 cm	(B) (D)	60 cm 75 cm
122.	The b (A) (C)	alance sheet of a dairy farm represent: Assets Both (A) and (B)	(B) (D)	Liabilities None of these
123.	Main (A) (C)	limitation in keeping farm records in Indi Illiteracy Big size of holding	a is: (B) (D)	Nature of farming None of these

124.	Profit and loss account is a type of:				
	(A) Personal account	(B)	Real account		
	(C) Nominal account	(D)	None of these		
125.	Which is the most prominent book for keeping farm records and accounts:				
	(A) Journal	(B)	Ledger		
	(C) Cash book	(D)	Purchase register		
126.	The list of all the physical property of a busine	ess alo	ong with their values at a specific		
	point of time is known as:				
	(A) Assets	(B)	Liabilities		
	(C) Farm inventory	(D)	None of these		
127.	The decline in value of assets due to usage, ac	cident	al damage and time obsolescence is		
	known as:		C		
	(A) Appreciation	(B)	Depreciation		
	(C) Interest	(D)	None of these		
128.	Which of the following is not a component of	farm 1	business:		
	(A) Capital	(B)	Land		
	(C) Market	(D)	Labour and management		
120	Queen of Eruita is:				
129.	(A) Mango	(\mathbf{B})	Apple		
	(C) Litchi	(D)	Banana		
		(2)			
130.	Low chilling pears are trained by:	(\mathbf{D})	Contro los don sustan		
	(A) Espanar System (C) Modified leader system	(\mathbf{B})	V trellies system		
	(C) Woulded leader system	(D)	r tremes system		
131.	Wind break established in the orchards is of:				
	(A) Jamun	(B)	Jhatti Khatti		
	(C) Karonda	(D)	Galgal		
132.	Strawberry is propagated through:				
	(A) Stolon	(B)	Runners		
	(C) Crown	(D)	Suckers		
133.	Epicotyl grafting is commonly done in:				
	(A) Guava	(B)	Litchi		
	(C) Pear	(D)	Mango		
124	Doigy is gross between				
134.	(A) Fortune x Fremont mandarin	(B)	King x Willow leaf		
	(C) Citrus grandis Osbeck \times Citrus	(D)	Sweet orange x <i>C trifoliata</i>		
	<u>Paradisi</u> Macf.	(-)	6		
135	Arunika is cross between				
100.	(A) Dashehari x Neelum	(B)	Neelum x Dashehari		
	C Amrapali x Vanraj	(D)	Sensation x Amrapali		
	· · · · · · · · · · · · · · · · · · ·	· · ·	*		

136.	Phytop (A) (C)	<i>ohthora</i> is controlled with the application of: Ridomil c. M 45	(B) (D)	Bayleton All of these
137.	Yellov (A) (C)	v pigment in papaya fruit is: Xanthophyll Lycopene	(B) (D)	Carotene Caricaxanthin
138.	Which (A) (C)	garden is also referred as 'Nature in Miniatu Japanese English	ure: (B) (D)	Mughals Persian
139.	Tree w (A) (C)	vith drooping inflorescence is: Jacaranda mimosaefolia Bassia latifolia	(B) (D)	Salyx baylonica Kigelia pinnata
140.	Red so (A) (C)	earlet is a cultivar of: Radish Onion	(B) (D)	Carrot Turnip
141.	Which (A) (C)	of the following is a climacteric fruit? Muskmelon Both A and B	(B) (D)	Tomato None of these
142.	Sun sc (A) (C)	alding incidence usually occurs in: Brinjal Muskmelon	(B) (D)	Tomato Cauliflower
143.	Sex ex (A) (C)	pression in pointed gourd is: Monoecious Dioecious	(B) (D)	Andromonoecious Hermaphrodite
144.	Which (A) (C)	of the following soil is most suitable for veg Sandy Clay loam	getable (B) (d)	s? Sandy Loam Clay
145.	The se (A) (C)	red required for one hectare sowing of carrot 1-2 kg 4-5 kg	is (B) (D)	10-15 kg 15-20 kg
146.	The m (A) (C)	ain reason for blanching of fruits and vegetal To make them soft To make the products taste better	bles is: (B) (D)	To inactivate enzymes For long term preservation of products
147.	What i (A)	s Canning Placing of foods in sealed metal containers	(B)	Storage of foods in hermetically sealed containers
148.	(C) What i (A) (C)	Placing cans in retorts is Brine A solution of sugar and water A solution of vinegar and water	(D) (B) (D)	None of these A solution of salt and water An additive used in food processing

149.	The m (A) (C)	nost economical way of drying fruits and vego Solar drying Mechanical drying	etables (B) (D)	o is Oven drying None of these
150.	Preser (A) (C)	rvative used in tomato Ketchup is Potassium Metabisulphite Citric acid	(B) (D)	Sodium Benzoate None of these
151.	While (A) (C)	walking on smooth surface one should take Large friction Larger normal force	small s (B) (D)	steps to ensure Small friction Smaller normal force
152.	What and tin (A) (C)	happens to a vehicle travelling in an unbanke res suddenly disappears Moves along tangent Moves radially out	ed curv (B) (D)	Moves radially in Moves along the curve
153.	A ball chang (A) (C)	of mass 0.2 kg strikes an obstacle and move these from 20m/s to 10m/s the magnitude of imp $2\sqrt{7}$ $2\sqrt{5}$	s at 60 oulse r (B) (D)	0 to its initial direction. If its speed received by the ball isNs $2\sqrt{3}$ $3\sqrt{2}$
154.	A spa of ma (A) (C)	cecraft of mass 2000kg moving with 600 m/s ss 500 kg is stationary. The velocity of other 600 1500	sudde part in (B) (D)	enly explodes into two pieces. One piece m/s is 800 1000
155.	16	kg 8 kg 4 kg The f	orce c	on 16 kg is?
	(A) (C)	140N 100N	(B) (D)	120N 80N
156.	A mai	n of mass 40 kg is at rest between the walls. I	f coeff	f. of friction between man and wall is

0.8, find the normal reaction exerted by wall on man (take g = 10 m/s/s)

(A)	100 N
(C)	80 N

(B)	250 N
(D)	50 N

	Find minimum height in terms of D to complete th	e loop	
	(A) 7D/4(C) 5D/4	(B) (D)	9D/4 3D/4
158.	 Gravitational force between two bodies is F. The s liquid of specific gravity 3. The gravitational force (A) F/9 (C) F 	pace as will b (B) (D)	round the mass is now filled with a e 3F F/3
159.	A man weighs 75 kg on the surface of earth. His w(A) infinity(C) zero	veight o (B) (D)	on the geostationary satellite is 150kg 75/2 kg
160.	 g at a depth of 1600 km inside the earth in m/s/s is (A) 6.65 (C) 8.65 	s (B) (D)	7.35 4.35
161.	A block of mass 19 M is suspended by a string of embedded in it. If the block completes the vertica (A) 140 (C) $20\sqrt{9.8}$	length l circle (B) (D)	1m. A bullet of mass M hits it and gets the velocity of bullet in m/s is $20\sqrt{19.6}$ 20
162.	A rubber ball falls from a height of 4m and rebour impact is (A) 20 (C) 23	(B) (D)	.5m. The % loss of energy during the 62.5 60
163.	 25 kg of sand is deposited each second on a converge required to maintain the belt in motion is (A) 2600W (C) 325W 	yor bel (B) (D)	250W 2500W
164.	A uniform rod of mass M and length L standing versibility of the bottom. The moment of inertia will (A) $ML^{2}/3$ (C) $ML^{2}/9$	ertically be (B) (D)	y on a horizontal floor falls without $ML^{2}/6$ $ML^{2}/12$
165.	If the velocity of C.M of a rolling body is V, then (A) $\sqrt{2V}$ (C) $2V$	velocit (B) (D)	y of highest point in the body will be $V = V/\sqrt{2}$
166.	The angular momentum of two rotating bodies are of their rotational K.E is (A) 1:2 (C) 1:4	equal. (B) (D)	If the ratio of their M.I is 1:4, the ratio 2:1 4:1

157.

167.	The le /s is (t	evel of water in a tank is 5m. A hole 1 cm^2 is ake $g=10 \text{ m/s/s}$	made	at the bottom. The rate of leakage in m ³
	(A)	10-3	(B)	10-4
1.60	(C)		(D)	
168.	Two b $3/5^{\text{th}}$ o	blocks A and B float in water. A floats with L	4 th of sities i	its volume immersed and B floats with
	(A)	5:12	(B)	12:5
	(C)	3:20	(D)	20:3
169.	The te liquid	erminal velocity of a spherical ball of lead of a varies with R such that	radius	R is V while falling through a viscous
	(A) (C)	V/R is constant V is constant	(B) (D)	VR is constant V/R^2 is constant
170.	A hyd	raulic press uses a piston of 100 cm ² to exert a	a force	e of 10^7 dynes on water. The area of the
	other j	piston that supports a mass of 2000 kg is (tak $\frac{100}{2}$	e g = 1	10m/s/s)
	(A)	100cm^2 2 x 10^4cm^2	(B)	10 cm 2 x 10^{10} cm^2
1.51	(C)		(D)	$2 \times 10^{\circ}$ cm
171.	When throug The ve	kerosene and coconut oil of coeff. of viscosi gh the same pipe, under same pressure differe olume of kerosene that flows is	ty 0.00 nce an	12 and 0.0154 Ns/m ² are followed and same time collects 1 lit of coconut oil.
	(A)	5.5 lit	(B)	6.6 lit
	(C)	7.7 lit	(D)	8.8 lit
172.	There	is a circular hole in metal plate. When the pla	ate is l	neated the radius of the hole becomes
	(A)	increased	(B)	decreased
	(C)	unchanged	(D)	depends on metal
173.	Specif given	fic heat of a substance depends on 1. Nature of to substance	of subs	stance. 2. Mass of substance. 3. Heat
	(A)	Only one is correct	(B)	Both 1 and 2 are correct
	(C)	All are correct	(D)	Only 1 and 3 are correct
174.	In a gi	ive process dW=0, dq is <0 then for a gas		
	(A)	Temperature increases	(B)	Volume decreases
	(C)	Pressure increases	(D)	Pressure decreases
175.	The ef	fficiency of carnot engine depends on		
	(A)	Working substance	(B)	Sink temperature
	(C)	Source temperature	(D)	Both B and C
176.	A 200 with e	turn coil of self inductance 30 mH carries a cach turn of coil	curren	t of 5 mA. Find the magnetic flux linked
	(A)	$7.5 \times 10^{-7} \text{Wb}$	(B)	1.6 x 10 ⁻⁷ Wb
	(C)	$3 \times 10^{-7} Wb$	(D)	1.5 x 10 ⁻⁷ Wb
177.	The in time the	nstantaneous value of current in an AC circuit he current will be maximum?	is I =	2 sin (100 π t + $\pi/3$) A. At what first
	(A)	1/100 s	(B)	1/200 s
	(C)	1/500 s	(D)	1 s
178.	What	in electric system represents force in mechan	ical sv	vstem ?
	(A)	L	(B)	Ι
	(C)	1/C	(D)	Q
- 179. A capacitor of 1 μ F is charged with 0.01C of electricity. How much energy is stored in it? (A) 30 J (B) 40 J
 - (A) 30 J (C) 50 J

181.

- J (D) 60 J
- 180. An electromagnetic wave is travelling in vacuum with a speed of 3×10^8 m/s. Find the velocity in a medium having relative electric and magnetic permeability 2 and 1, respectively. (A) $3/\sqrt{2} \times 10^8$ m/s (B) 1.5×10^8 m/s
 - (A) $3/\sqrt{2} \times 10^8 \text{m/s}$ (B) $1.5 \times 10^8 \text{m/s}$ (C) $2 \times 10^8 \text{m/s}$ (D) No change
 - Trace the path of ray of light passing through a glass prism as shown in the figure. If the

182. Light wave from two coherent sources of intensities in ratio 64:1 produces interference. Calculate the ration of maximum and minima of the interference pattern.

(A)	8:1	(B)	64:1
(C)	9:7	(D)	81:49

183. In young's experiment, the width of the fringes obtained with light of wavelength 6000 A° is 2 mm. What will be the fringe width, if the entire apparatus is immersed in a liquid of refractive index 1.33?

(A)	1 mm	(B)	1.5 mm
(C)	2 mm	(D)	2.5 mm

184. Unpolarised light is incident on plane glass surface. What should be the angle of incidence in degrees, so that the reflected and refracted rays are perpendicular to each other? (A) 37 (B) 47

(11)	51	(D)	- T /
(C)	57	(D)	67

185. Determine the de-Broglie wavelength associated with an electron, accelerated through a potential difference of 100 V.

(A)	1.227A ^o	(B)	12.27A°
(C)	122.7A°	(D)	1227A°

186. A particle with rest mass m_0 is moving with velocity c. What is the de-Broglie wavelength associated with it?

(A)	infinity	(B)	zero
(C)	radio wave	(D)	X ray

187. Which among the following series gives visible light?

(A)	Lyman	(B)	Balmer
(\mathbf{C})	D	(D)	Mana afd.

(C) Bracket (D) None of these

188. Identify the logic operation performed by this circuit

189. The number of silicon atoms per m³ is 5 x 10²⁸. This is doped simultaneously with 5 x 10²² atoms per m³ of arsenic and 5 x 10²⁰ atoms per m³ of indium. Calculate the number of holes, given that $n_i = 1.5 \times 10^{16} \text{ m}^{-3}$.

(A)	$4.54 \times 10^{9} \text{m}^{-3}$	(B)	$4.95 \times 10^{22} \text{m}^{-3}$
(C)	$1.5 \ge 10^{16} \text{m}^{-3}$	(D)	$5 \times 10^{28} \text{m}^{-3}$

190. Two charges $+5\mu C$ and $-5\mu C$ are placed 5 mm apart. Determine E at a point 10 cm from centre on the positive charge side along the axial line.

(A)	4.5 x 10 ⁵ N/C	(B)	4.5 x 10°NC
(C)	4.5 x 10 ⁻⁵ N/C	(D)	4.5 x 10 ⁻⁵ NC

- 191. If the Gaussian surface is so chosen that there are some charges inside and some outside than the electric field is due to
 - (A) Only inside charges (B) Only outside charges
 - (C) All the charges (D) Cannot determine
- 192. The following is a diagram showing the variation of E with r from centre of uniformly charge spherical shell of radius R

r

193. Net capacitance of 3 identical capacitor in series is $1 \mu F$. What is the net capacitance in μF if connected in parallel?

(A)	3	(B)	6
(C)	9	(D)	12

194. An inductor of 5H carries a steady current of 2A. In what time if the current is made zero can a 40V self induced emf be produced in the inductor.

(A)	2s	(B)	1s
(C)	0.5s	(D)	0.25s

195. A cell of emf E and internal resistance r gives 0.5A with R=12 ohms and 0.25 with R = 25 ohms. Its internal resistance in ohms will be (A) = 0.5(B) 1

(A)	0.5	(B)	1
(C)	2	(D)	3

196.

Find current in the following circuit 2Ω 1Ω 2Ω 2Ω (A) 1A (C) 3A (B) 2A (D) 4A

197. Two identical circular loops P and Q of radius r are placed in parallel planes with same axis at a distance of 2r. Find the midpoint of the axis between them if same current I flows through both loops.

(A)	$\mu_0 I/2^{3/2} r$	(B)	$\mu_0 2 I/2^{3/2} r$
(C)	$\mu_0 I/4\pi r$	(D)	Cannot be determined

198. A block of mass 4 kg is kept on a rough horizontal surface. The coefficient of static friction is 0.8. If a force of 19 N is applied on the block parallel to the floor, then the force of friction between the block and floor is:

(A)	19N	(B)	18 N
(C)	16N	(D)	9.8N

Current in a circuit falls steadily from 2A to 0A in 10 ms. Calculate L if emf induced is 200V. 199.

- (A) 1H(B) 2H 4H (D)
 - (C)3Н

Self inductance of the air core inductor increases from 0.01 mH to 10 mH on introducing an iron 200. core. What is the relative permeability of the core used?

- (A) 500 (B) 800 (C)
 - 900 (D) 1000

Sr. No	Question		
INU.			
1.	Crossing over occurs in meiosis I during:		
	(A) Metaphase	(B)	Telophase
	(C) Anaphahse	(D)	Pachytene
2.	Power house of the cell:		
	(A) Golgi body	(B)	Ribosomes
	(C) Mitochondria	(D)	Lysosomes
3.	Genetics is the study of:		
	(A) Heredity	(B)	Variation
	(C) Both A and B	(D)	None of these
4.	In sex -linked inheritance, characters are pass	ed from	n father to the grandsons through his:
	(A) Daughter	(B)	Son
	(C) Both daughter and son	(D)	Any of them
5.	Which of the following bases is not present in	RNA	
	(A) II 'I		
	(A) Uracil	(B)	Thymine
	(C) Adenine	(D)	Cytosine
6.	Mendel's principle of independent assortment	can be	e demonstrated through:
	(A) Monohybrid cross	(B)	Dihybrid cross
	(C) Both A and B	(D)	Any of them
7.	On hydrolysis, maltose gives		
	(A) $glucose + glucose$	(B)	glucose + lactose
	(C) glucose + fructose	(D)	glucose + galactose
8.	A dipeptide has peptide bonds.		
	(A) Three	(B)	One
	(C) Two	(D)	None of them
9.	Which vitamin can be synthesized by green p	lants a	nd various micro-oraganisms
	but not by mammals? $(A) = A \operatorname{spartial} a \operatorname{spart}^{d}$	(D)	Dontothonia asid
	(C) Thiamine	(B) (D)	Retinol
		(2)	
10.	Bacterial cell wall is made up of:		
	(A) Chitin	(B)	Cellulose
	(C) Peptidoglycan	(D)	All the above

11.	Plant	viruses are generally of:		
	(A)	KNA mRNA	(B)	DNA tRNA
	(C)	IIIKIVA	(D)	
12.	Gram	positive aerobic, filamentous bacteria wi	th hyp	phae are known as:
	(A)	Algae	(B)	Actinomycetes
	(C)	Bacteria	(D)	Fungi
12	Conu	argion of organic matter in to simple incr	ania	forms is called:
15.	(A)	Immobilization	(B)	Mineralization
	(C)	Co ₂ fixation	(D)	Nitrification
14	Erroo	$\sim corbon (\sim C/N ratio) loads to rate of do$		acition
14.	Exces (A)	Slow	(B)	Fast
	(C)	Optimum	(D)	None
1.5				
15.	N_2 fix	curst curst cyanobacteria are known as:	(D)	Alzinatas
	(\mathbf{A}) (\mathbf{C})	Spores	(\mathbf{D})	Heterocyst
	(-)			
16.	Lives	tock is important source of:		
	(A)	Milk	(B)	Meat
	(C)	Manure	(D)	All of these
17.	Dairy	cattle and buffalo can be called as:		
	(A)	Caprine	(B)	Ovine
	(C)	Bovine	(D)	Equine
18.	Best l	breed of buffalo in India:		
	(A)	Nili Ravi	(B)	Murrah
	(C)	Surti	(D)	Toda
19	Best 1	aver noultry strain is:		
17.	(A)	WLH	(B)	Minorca
	(C)	Karaknath	(D)	Sutlez
20	Norm	al hirth weight (Kg) of healthy buffalo o	alfig	
20.	(A)	20	(B)	30
	(C)	40	(D)	50
21.	Numl	ber of teats in buffalo:	(\mathbf{D})	4
	(A)	2 6	(В) (D)	4 8
	(\mathbf{c})	v	(1)	0

22.	Dry matter requirement (kg) of a cow weighing (A) 8 (C) 12	g 400 (B) (D)	kg is: 10 14
23.	Green fodder requirement of adult cattle (kg): (A) 30 (C) 50	(B) (D)	40 60
24.	Which of the following crops is the best for ha(A) Jowar(C) Berseem	y mak (B) (D)	ing: Bajra Oat
25.	Normal body temperature of healthy poultry by (A) 37.0 (C) 107.0	ird (°F (B) (D)	5): 98.6 117.0
26.	ICAR-National Dairy Research Institute (NDR(A) Karnal(C) Bareilly	CI) is l (B) (D)	ocated at: New Delhi Anand
27.	Excessive gas accumulation in rumen indicates(A) Impaction(C) Milk fever	5: (B) (D)	Bloat Foot and Mouth Disease
28.	Most fatal disease in farm animals is:(A) Foot and Mouth Disease(C) Rinderpest	(B) (D)	HS Anthrax
29.	Semen is stored in liquid nitrogen at (°C): (A) -79 (C) 79	(B) (D)	-196 196
30.	During Artificial Insemination (AI) semen sho(A) Vagina(C) Uterus	uld be (B) (D)	e deposited Cervix Fallopian tube
31.	 Seeds of groundnut contain about: (A) 25% oil and 50% protein (C) 40% oil and 40% protein 	(B) (D)	20% oil and 40% protein 50% oil and 25% protein
32.	Organic carbon is a measure of(A) Available nitrogen in soil(C) Excess of carbon in soil	(B) (D)	Available nutrient in soil Excess of iron in soil

33.	Whic	h among the following element is conside	ered in	nmobile in the plant
	(A)	Calcium	(B)	Phosphorus
	(C)	Nitrogen	(D)	Magnesium
34.	Whic	h among the following is recommended v	variety	of durum wheat:
	(A)	HD 2960	(B)	WH 896
	(C)	PBW 725	(D)	WH 711
35.	Recon (A) (C)	mmended dose of nutrients for berseem (l 10 kg N, 28 kg P ₂ O ₅ 20 kg N, 40 kg P ₂ O ₅	(B) (D)	e) is: 40 kg N, 25 kg P ₂ O ₅ 20 kg N, 20 kg P ₂ O ₅
36.	Optin (A) (C)	num row spacing for cotton is: 50 cm 67.5 cm	(B) (D)	60 cm 75 cm
37.	Optin	num sowing time of summer moong in th	e state	e is:
	(A)	March	(B)	Second fortnight of February
	(C)	First fortnight of April	(D)	End June-early July
38.	'Whit (A) (C)	te alkali' soil refers to: Acid soil Salina sodic soil	(B) (D)	Saline soil Sodic soil
39.	The e	exchange sodium percentage (ESP) of alka	ali soi	ls is always:
	(A)	More than 15	(B)	Any value
	(C)	Less than 15	(D)	Less than 7.5
40.	ICAR	R-Central Arid Zone Research Institute is	locate	ed at:
	(A)	Nagpur	(B)	Hyderabad
	(C)	New Delhi	(D)	Jodhpur
41.	India (A) (C)	is divided in to ecological zones. 12 15	(B) (D)	10 20
42.	Reco	mmended seed rate (kg/ha) of dhaincha or	r sunh	emp for green manuring is:
	(A)	20	(B)	30
	(C)	40	(D)	50
43.	Recon	mmended seed rate for <i>spring</i> season mur	ngbear	n is
	(A)	15-20 kg per acre	(B)	25-30 kg per hectare
	(C)	15-20 kg per hectare	(D)	10 kg per hectare
44.	For tr (A) (C)	ransplanting of pearl millet (bajra) in Hary Two weeks Four weeks	yana, (B) (D)	optimum age of seedlings is: Three weeks Five weeks

45.	Blind	tillage refers to:		
	(A)	Summer ploughing	(B)	Primary tillage
	(C)	Hoeing before germination	(D)	Hoeing in standing crop rows
46.	Flam	e photometer is used for the determinatio	n of:	
	(A)	Nitrogen	(B)	Phosphorus
	(C)	Potassium	(D)	Boron
47.	Tetra	zolium test is conducted to test the:		
	(A)	Physical purity of seed	(B)	Percentage of weed seeds
	(C)	Viability of seed	(D)	Seed germination
48.	Worl	d Food Day is celebrated on:		
	(A)	5 June	(B)	20 June
	(C)	28 February	(D)	16 October
49.	Whic	h among the following is the best and cho	eapest	method of weed control:
	(A)	Cultural measures	(B)	Herbicide based weed control
	(C)	Biological control	(D)	Preventive measures
50.	Black	soils in India belong to soil order:		
	(A)	Alfisol	(B)	Inceptisol
	(C)	Vertisol	(D)	Oxisol
51.	Whic	h among the following crop has epigeal	germir	nation?
	(A)	Sunflower	(B)	Chickpea
	(C)	Rice	(D)	Pearl millet
52.	Whic	h fraction of soil organic matter is soluble	e in bo	oth alkali and acid:
	(A)	Humic acid	(B)	Fulvic acid
	(C)	Hymatomelonic acid	(D)	Humin acid
53.	Nitro	gen use efficiency in rice can be increase	d by:	
	(A)	Delayed application of N	(B)	Use of biofertilizers
	(C)	Application of S-coated urea	(D)	Application of blue green algae
54.	Whie	h stage of sugarcane is most critical for in	rrigati	on?
	(A)	Germination	(B)	Formative stage
	(C)	Grand growth phase	(D)	Ripening stage
55.	The l	argest producer of rapeseed-mustard in Ir	ndia is	
	(A)	Haryana	(B)	Uttar Pradesh
	(C)	Rajasthan	(D)	Gujarat
56.	The t	erm Functional or Metabolic Nutrients w	as pro	posed by:
	(A)	JV Leibig	(B)	DJ Nicholas
	(C)	DI Arnon	(D)	Mosanoba Fukuoka

57.	 Botanical name of sunnhemp is (A) Sesbania aculeata (C) Carthamus tinctorium 	(B) (D)	Trifolium alexandrinum Crotolaria juncea
58.	 The upper limit of soil moisture (A) PWP (15 bars) (C) Field capacity (1/3 bars) 	e available for plant g (B) (D)	rowth is: Hygroscopic coefficient Gravitational potential
59.	For which fertilizer, India is ful(A) N fertilizers(C) P fertilizers	ly dependent on imp (B) (D)	ort? K fertilizers S fertilizers
60.	Agrostology is the branch of Ag(A) Aromatic and medicinal(C) Fodder crops	gronomy that deals w crops (B) (D)	rith cultivation of: Non edible oilseeds Green manure crops
61.	With excessive use of nitrogen(A) Increased(C) Decreased	in sugarcane, the sug (B) (D)	ar content in juice is: Remains same Not affected
62.	Bacteria responsible for nitroge	n fixation in soybear	is
	(A) Rhizobium leguminosaru(C) Rhizobium phaseoli	m (B) (D)	Rhizobium japonicum Rhizobium trifoli
63.	The most critical stage of irriga(A) Silking stage(C) Grain development stage	tion in maize is: (B) (D)	Tasseling stage Dough stage
64.	Nipping in chickpea is beneficial(A) Promote branching(C) Check excessive vegetation	al to: (B) ve growth (D)	Promote flowering Improve seed setting
65.	Quantity of urea required by wh (A) 130 (C) 110	neat for one acre at a (B) (D)	dose of 125 kg per hectare is: 90 275
66.	 Congress grass (Parthenium hy. (A) Chrysoperla (C) Zygogramma bicolorata 	sterophorus) can be (B) (D)	controlled by insect: Dactylopius tomentosus Bacillus thuringiensis
67.	Application of organic material leads to:(A) N immobilization(C) Immediate release in N	(B) (D)	N leaching N mineralization
68.	Heavy shedding of buds and bo(A) Deficiency of N in soil(C) Deficiency of P in soil	lls in cotton occurs d (B) (D)	ue to: Water stress at bud formation stage Excess of N is soil

69.	'Whip tail' is brassica is due to the deficiency	of:	
	(A) Calcium	(B)	Magnesium
	(C) Manganese	(D)	Zinc
70.	Which kind of soil mineralogy has the highes	t 'cati	on exchange capacity':
	(A) Kaolinite	(B)	Illite
	(C) Montmorillonite	(D)	Humus
71.	Optimum row spacing for fodder crops is:		
	(Å) 30 cm	(B)	60 cm
	(C) 45 cm	(D)	75 cm
72.	The balance sheet of a dairy farm represent:		
	(A) Assets	(B)	Liabilities
	(C) Both (A) and (B)	(D)	None of these
73.	Main limitation in keeping farm records in Ind	lia is:	
	(A) Illiteracy	(B)	Nature of farming
	(C) Big size of holding	(D)	None of these
74.	Profit and loss account is a type of:		
	(A) Personal account	(B)	Real account
	(C) Nominal account	(D)	None of these
75.	Which is the most prominent book for keeping	g farm	records and accounts:
	(A) Journal	(B)	Ledger
	(C) Cash book	(D)	Purchase register
76.	The list of all the physical property of a busine point of time is known as:	ess alo	ng with their values at a specific
	(A) Assets	(B)	Liabilities
	(C) Farm inventory	(D)	None of these
77.	The decline in value of assets due to usage, ac known as:	cident	al damage and time obsolescence is
	(A) Appreciation	(B)	Depreciation
	(C) Interest	(D)	None of these
78.	Which of the following is not a component of	farm l	ousiness:
	(A) Capital	(B)	Land
	(C) Market	(D)	Labour and management
70	Queen of Emilts is:		-
19.	(A) Mango	(B)	Apple
	(C) Litchi	(D)	Banana
0.0			
80.	Low chilling pears are trained by: (A) Espaliar system	(\mathbf{D})	Centre leader system
	(C) Modified leader system	(\mathbf{D})	Y trellies system
		(D)	
81.	Wind break established in the orchards is of:		TL 4. TZ1 4.
	(A) Jamun (C) Karanda	(B)	Jnatti Knatti Galgal
	(C) Karonda	(D)	Gaigai

82.	Strawl (A) (C)	berry is propagated through: Stolon Crown	(B) (D)	Runners Suckers
83.	Epicot (A) (C)	tyl grafting is commonly done in: Guava Pear	(B) (D)	Litchi Mango
84.	Daisy (A) (C)	is cross between: Fortune x Fremont mandarin <u>Citrus grandis</u> Osbeck × <u>Citrus</u> <u>Paradisi</u> Macf.	(B) (D)	King x Willow leaf Sweet orange x <i>C trifoliata</i>
85.	Arunil (A) (C)	ka is cross between: Dashehari x Neelum Amrapali x Vanraj	(B) (D)	Neelum x Dashehari Sensation x Amrapali
86.	Phytop (A) (C)	<i>phthora</i> is controlled with the application of: Ridomil c. M 45	(B) (D)	Bayleton All of these
87.	Yellov (A) (C)	w pigment in papaya fruit is: Xanthophyll Lycopene	(B) (D)	Carotene Caricaxanthin
88.	Which (A) (C)	n garden is also referred as 'Nature in Miniat Japanese English	ure: (B) (D)	Mughals Persian
89.	Tree w (A) (C)	vith drooping inflorescence is: Jacaranda mimosaefolia Bassia latifolia	(B) (D)	Salyx baylonica Kigelia pinnata
90.	Red s (A) (C)	carlet is a cultivar of: Radish Onion	(B) (D)	Carrot Turnip
91.	Whick (A)	h of the following is a climacteric fruit? Muskmelon	(B)	Tomato
	(C)	Both A and B	(D)	None of these
92.	Sun se (A)	calding incidence usually occurs in: Brinjal	(B)	Tomato
	(C)	Muskmelon	(D)	Cauliflower

93.	Sex e (A)	expression in pointed gourd is: Monoecious	(B)	Andromonoecious
	(C)	Dioecious	(D)	Hermaphrodite
94.	Whic (A)	ch of the following soil is most suitable fo Sandy	r vege (B)	etables? Sandy Loam
	(C)	Clay loam	(d)	Clay
95.	The s (A)	seed required for one hectare sowing of ca 1-2 kg	rrot is (B)	s 10-15 kg
	(C)	4-5 kg	(D)	15-20 kg
96.	The n (A) (C)	nain reason for blanching of fruits and vegeta To make them soft To make the products taste better	bles is (B) (D)	: To inactivate enzymes For long term preservation of products
97.	What (A) (C)	is Canning Placing of foods in sealed metal containers Placing cans in retorts	(B) (D)	Storage of foods in hermetically sealed containers None of these
98.	What (A) (C)	is Brine A solution of sugar and water A solution of vinegar and water	(B) (D)	A solution of salt and water An additive used in food processing
99.	The n (A) (C)	nost economical way of drying fruits and veg Solar drying Mechanical drying	etables (B) (D)	s is Oven drying None of these
100.	Prese (A) (C)	rvative used in tomato Ketchup is Potassium Metabisulphite Citric acid	(B) (D)	Sodium Benzoate None of these
101.	While (A) (C)	e walking on smooth surface one should take Large friction Larger normal force	small (B) (D)	steps to ensure Small friction Smaller normal force
102.	What and ti (A) (C)	happens to a vehicle travelling in an unbanker res suddenly disappears Moves along tangent Moves radially out	ed curv (B) (D)	Moves radially in Moves along the curve
103.	A bal chang (A) (C)	l of mass 0.2 kg strikes an obstacle and move ges from 20m/s to 10m/s the magnitude of imp $2\sqrt{7}$ $2\sqrt{5}$	s at 60 pulse r (B) (D)	2^{0} to its initial direction. If its speed received by the ball isNs $2\sqrt{3}$ $3\sqrt{2}$
104.	A spa of ma (A) (C)	acccraft of mass 2000kg moving with 600 m/s ss 500 kg is stationary. The velocity of other 600 1500	sudde part ir (B) (D)	enly explodes into two pieces. One piece n m/s is 800 1000

105.

106. A man of mass 40 kg is at rest between the walls. If coeff. of friction between man and wall is 0.8, find the normal reaction exerted by wall on man (take g = 10 m/s/s)

113.	25 kg of sand is deposited each second on a conveyor belt moving at 10m/s. The extra power required to maintain the belt in motion is			
	(A) (C)	2600W 325W	(B) (D)	250W 2500W
114.	A unit slippii	form rod of mass M and length L standing vering at the bottom. The moment of inertia will l	rtically be	y on a horizontal floor falls without
	(A) (C)	ML ² /3 ML ² /9	(B) (D)	$\frac{ML^{2}}{6}$ $\frac{ML^{2}}{12}$
115.	If the (A)	velocity of C.M of a rolling body is V, then v $\sqrt{2V}$	elocity (B)	y of highest point in the body will be V
	(C)	2V	(D)	$V/\sqrt{2}$
116.	The an of the	ngular momentum of two rotating bodies are a rotational K.E is	equal.	If the ratio of their M.I is 1:4, the ratio
	(A) (C)	1:2 1:4	(B) (D)	2:1 4:1
117.	The le	evel of water in a tank is 5m. A hole 1 cm ² is also $g = 10 \text{ m/s/c}$	made	at the bottom. The rate of leakage in m ³
	(A)	10^{-3}	(B)	10-4
	(C)	10	(D)	10 ⁻²
118.	Two b $3/5^{\text{th}}$ o	blocks A and B float in water. A floats with $1/2$ if its volume immersed. The ratio of their den	/4 ^m of sities i	its volume immersed and B floats with
	(A) (C)	3:20	(B) (D)	20:3
119.	The te liquid	erminal velocity of a spherical ball of lead of a varies with R such that	radius	R is V while falling through a viscous
	(A) (C)	V/R is constant V is constant	(B) (D)	VR is constant V/R^2 is constant
120.	A hyd other	raulic press uses a piston of 100 cm ² to exert a piston that supports a mass of 2000 kg is (tak	a force e g = 1	$c of 10^7 dynes on water. The area of the 10m/s/s$
	(A) (C)	100cm^2 2 x 10 ⁴ cm ²	(B) (D)	10^9 cm^2 2 x 10^{10} cm^2
121.	When throug The ve	kerosene and coconut oil of coeff. of viscosing the same pipe, under same pressure differe plume of kerosene that flows is	ty 0.00 nce an	02 and 0.0154 Ns/m ² are followed id same time collects 1 lit of coconut oil.
	(A) (C)	5.5 lit 7 7 lit	(B) (D)	6.6 lit 8 8 lit
122.	There	is a circular hole in metal plate. When the plate	ate is h	neated the radius of the hole becomes
	(A) (C)	increased unchanged	(B) (D)	decreased depends on metal
123.	Specif given	fic heat of a substance depends on 1. Nature of the substance	of subs	tance. 2. Mass of substance. 3. Heat
	(A) (C)	Only one is correct All are correct	(B) (D)	Both 1 and 2 are correct Only 1 and 3 are correct
124	Inam	ive process $dW=0$ dg is <0 then for a gas	(-)	,
	(A)	Temperature increases	(B)	Volume decreases
	(C)	Pressure increases	(D)	Pressure decreases

125.	The ex (A) (C)	fficiency of carnot engine depends on Working substance Source temperature	(B) (D)	Sink temperature Both B and C
126.	A 200 with e (A) (C)) turn coil of self inductance 30 mH carries a each turn of coil. 7.5 x 10 ⁻⁷ Wb 3 x 10 ⁻⁷ Wb	curren (B) (D)	t of 5 mA. Find the magnetic flux linked 1.6×10^{-7} Wb 1.5×10^{-7} Wb
127.	The ir time t (A) (C)	nstantaneous value of current in an AC circuit he current will be maximum? 1/100 s 1/500 s	t is I = (B) (D)	2 sin (100 π t + $\pi/3$) A. At what first 1/200 s
128.	What (A) (C)	in electric system represents force in mechan L 1/C	ical sy (B) (D)	rstem ? I q
129.	A cap (A) (C)	acitor of 1 µF is charged with 0.01C of electr 30 J 50 J	ricity. (B) (D)	How much energy is stored in it? 40 J 60 J
130.	An ele a med (A) (C)	ectromagnetic wave is travelling in vacuum w lium having relative electric and magnetic per $3/\sqrt{2} \ge 10^8$ m/s $2 \ge 10^8$ m/s	vith a s rmeabi (B) (D)	speed of 3 x 10^8 m/s. Find the velocity in ility 2 and 1, respectively. 1.5×10^8 m/s No change
131.	Trace refrac	the path of ray of light passing through a glastive index of glass is $\sqrt{3}$, find out the value of	ss pris Fangle	m as shown in the figure. If the of emergence from prism.
		60		
	(A) (C)	30 60	(B) (D)	45 75
132.	Light the rat (A) (C)	wave from two coherent sources of intensitie tion of maximum and minima of the interfere 8:1 9:7	s in ra nce pa (B) (D)	tio 64:1 produces interference. Calculate attern. 64:1 81:49
133.	In you mm. V index (A)	ing's experiment, the width of the fringes obt What will be the fringe width, if the entire app 1.33? 1 mm	ained paratus (B)	with light of wavelength 6000 A° is 2 s is immersed in a liquid of refractive 1.5 mm
	(C)	2 mm	(D)	2.5 mm
134.	Unpol degree (A) (C)	larised light is incident on plane glass surface es, so that the reflected and refracted rays are 37 57	e. Wha perper (B) (D)	at should be the angle of incidence in ndicular to each other? 47 67

- 135. Determine the de-Broglie wavelength associated with an electron, accelerated through a potential difference of 100 V.
 - $\begin{array}{cccc} (A) & 1.227A^{\circ} & (B) & 12.27A^{\circ} \\ (C) & 122.7A^{\circ} & (D) & 1227A^{\circ} \end{array}$
- 136. A particle with rest mass m_0 is moving with velocity c. What is the de-Broglie wavelength associated with it?

(A)	infinity	(B)	zero
(C)	radio wave	(D)	X ray

- 137. Which among the following series gives visible light?
 - (A) Lyman(B) Balmer(C) Bracket(D) None of these
- 138. Identify the logic operation performed by this circuit

- 139. The number of silicon atoms per m³ is 5 x 10²⁸. This is doped simultaneously with 5 x 10²² atoms per m³ of arsenic and 5 x 10²⁰ atoms per m³ of indium. Calculate the number of holes, given that $n_i = 1.5 \times 10^{16} \text{ m}^{-3}$.
 - (A) $4.54 \times 10^{9} \text{m}^{-3}$ (B) $4.95 \times 10^{22} \text{m}^{-3}$ (D) $5 \times 10^{28} \text{m}^{-3}$
- 140. Two charges $+5\mu C$ and $-5\mu C$ are placed 5 mm apart. Determine E at a point 10 cm from centre on the positive charge side along the axial line.
 - (A) 4.5×10^{5} N/C (B) 4.5×10^{5} N/C (D) 4.5×10^{-5} N/C (D) 4.5×10^{-5} NC
- 141. If the Gaussian surface is so chosen that there are some charges inside and some outside than the electric field is due to
 - (A) Only inside charges (B) Only outside charges
 - (C) All the charges (D) Cannot determine

142. The following is a diagram showing the variation of E with r from centre of uniformly charge spherical shell of radius R

143. Net capacitance of 3 identical capacitor in series is $1 \mu F$. What is the net capacitance in μF if connected in parallel?

(A)	3	(B)	6
(C)	9	(D)	12

144. An inductor of 5H carries a steady current of 2A. In what time if the current is made zero can a 40V self induced emf be produced in the inductor.

(A)	2s	(B)	1s
(C)	0.5s	(D)	0.25s

145. A cell of emf E and internal resistance r gives 0.5A with R=12 ohms and 0.25 with R = 25 ohms. Its internal resistance in ohms will be

(A)	0.5	(B)	1
(C)	2	(D)	3

146.

^{14 |} P C A C

147.	Two identical circular loops P and Q of radius r are placed in parallel planes with same axis at a distance of 2r. Find the midpoint of the axis between them if same current I flows through both loops. (A) $\mu_1 I/2^{3/2} r$ (B) $\mu_2 I/2^{3/2} r$				
	(\mathbf{C})	$\mu_0 I/2 \pi$ r	(D) (D)	Cannot be determined	
148.	A bloc 0.8. If betwe (A)	ck of mass 4 kg is kept on a rough horizontal a force of 19 N is applied on the block paral en the block and floor is: 19N	surfac lel to t (B)	e. The coefficient of static friction is he floor, then the force of friction 18 N	
	(C)	16N	(D)	9.8N	
149.	Curren (A) (C)	nt in a circuit falls steadily from 2A to 0A in 1H 3H	10 ms. (B) (D)	Calculate L if emf induced is 200V. 2H 4H	
150.	Self ir core. V (A) (C)	nductance of the air core inductor increases fr What is the relative permeability of the core u 500 900	om 0.0 ised? (B) (D)	01 mH to 10 mH on introducing an iron 800 1000	
151.	Amon (A) (C)	g the following, the most stable complex is $[Fe (H_2O)_6]^{3^+}$ $[Fe (C_2O_4)_3]^{3^-}$	(B) (D)	$[Fe (NH_3)_6]^{3+}$ $[Fe (Cl)_6]^{3-}$	
152.	Which metal (A) (C)	n is the correct coordination number (C.N) an atom in [Co(NH ₃) ₂ (H ₂ O) ₂ Cl ₂] ⁺ ? C.N=3, O.N=+1 C.N=6, O.N=+1	d oxid (B) (D)	ation number (O.N) of the transition C.N=4, O.N=+2 C.N=6, O.N=+3	
153.	In a so cation (A) (C)	blid, oxide ions are arranged in ccp, cations A B occupy one third of the octahedral voids. ABO ₃ AB ₃ O	occup Гhe fo (B) (D)	by one sixth of the tetrahedral voids and rmula of the solid is: A ₃ BO A ₃ B ₃ O ₃	
154.	On mi Which	ixing acetone to methanol some of the hydrog n of the following statements is correct about	gen bor the ab	nds between methanol molecules break. ove process?	
	(A) (C)	At specific composition methanol acetone mixture will form minimum boiling azeotrope and show positive deviation from Raoult's law At specific composition methanole acetone mixture will form minimum boiling azeotrope and show negative deviation from Raoult's law	(B)	At specific composition methanol acetone mixture will form maximum boiling azeotrope and show positive deviation from Raoult's law At specific composition methanole acetone mixture will form maximum boiling azeotrope and show negative deviation from Raoult's law	
155.	$K_{\rm H}$ value for argon, carbon dioxide, formaldehyde and methane gases are 40.39, 1.67, 1.83 X 10 ⁻⁵ and 0.413, respectively. The correct arrangement of these gases in the order of their increasing				
	(A)	formaldehyde <methane<carbon dioxide<argon< td=""><td>(B)</td><td>formaldehyde< carbon dioxide <methane<argon< td=""></methane<argon<></td></argon<></methane<carbon 	(B)	formaldehyde< carbon dioxide <methane<argon< td=""></methane<argon<>	
	(U)	methane <formaldehyde< td=""><td>(D)</td><td><formaldehyde< td=""></formaldehyde<></td></formaldehyde<>	(D)	<formaldehyde< td=""></formaldehyde<>	

156.	The number of faradays of electricity required for electrolytic conversion of the mole of nitrobenzene to aniline is: (A) $3E$ (B) $4E$			
		(D) $5F$		
157.	The positive value of the standard electrode poter	ntial of Ag ⁺ /Ag indicates that:		
	(A) This redox couple is a stronger reducing agent than H^+/H_2 couple	 (B) This redox couple is a stronger oxidizing agent than H⁺/H₂ couple (D) As any displayed H. from here 		
1.50	(C) Ag can displace H_2 from acid	(D) Ag can displace H_2 from base		
158.	Milk is refrigerated in order to slow the rate of de reaction rate is due to:	ecomposition by bacterial action. The decrease in		
	 (A) A decrease in surface area (C) A decrease in the fraction of particles possessing sufficient energy. 	 (B) A decrease in △ H for the reaction (D) The introduction of an alternative pathway with greater activation energy. 		
159.	 Which of the following statements is not correct? (A) The rate of a reaction decreases with passage of time as concentration of reactants decrease 	(B) The instantaneous rate a reaction is same at any time during the reaction		
	 (C) For a zero order reaction the concentration of reactants remains changed with passage of time 	(D) The rate of a reaction decreases with increase in concentration of reactant (s)		
160.	Which of the following gases shows the lowest a temperatures are given in parenthesis:	dsorption per gram of charcoal? The critical		
	(A) $H_2(33K)$ (C) $SO_2(630K)$	(B) $CH_4(190K)$ (D) $CO_2(304K)$		
161.	Freundlich adsorption isotherm is given by the exstatements are false?	xpression $x/m=kp^{1/n}$. Which of the following		
	i. When $1/n=0$, the adsorption is indep	endent of pressure.		
	iii. When $1/n=0$, the plot of x/m vs p graph iii. When $1/n=0$, the adsorption is direct iv. When $n=0$, plot of x/m vs p is a surrouted by the second	tly proportional to pressure.		
	(A) i and ii	(B) ii and iv		
	(C) i and iii	(D) all are false		
162.	In the extraction of chlorine by electrolysis of an the following statements are true? i. $\triangle G^0$ for the overall reaction is positi ii. $\triangle G^0$ for the overall reaction is negative iii. E^0 for the overall reaction is positive iv. E^0 for the overall reaction is negative	aqueous solution of sodium chloride, which of tive ative e		
	(A) i and iv (C) ii and iii	(B) i and iii (D) iii and iy		
162	Which of the following pairs of ions are isoclast:	(D) In and iv		
103.	(A) NO_2^+ and NO_3^-	(B) ClO_3^- and ICl_4^-		

(A) NO_2 and NO_3 (B) CIO_3 and ICI_4 (C) $XeO_3^{2^2}$ and PCI_3 (D) CIO_3^{-1} and $SO_3^{2^2}$

164.	Whic	Which of the following hydrides is the strongest reducing agent?					
	(A)	NH ₃	(B)	PH ₃			
	(C)	AsH ₃	(D)	SbH ₃			
165.	Const	ider the reactions,					
	i.	$Zn + Conc. HNO_3 (hot) \longrightarrow Zn (1)$	NO ₃) ₂ -	$+X + H_2O$			
	ii	. $Zn + dil. HNO_3 (cold) \longrightarrow Zn ($	$(NO_3)_2$	$+ Y + H_2O$			
		Compounds X and Y are, respectively	У				
	(A)	N ₂ O, NO	(B)	NO_2, NO_2			
	(C)	N_2, N_2O	(D)	NO_2 , NO			
166.	Wher mang	n KMnO ₄ acts as an oxidizing agent in weakl anese decreases by:	y alkal	ine medium, the oxidation number of			
	(A)	1	(B)	2			
	(C)	3	(D)	5			
167.	Acidi forma	fied potassium dichromate solution turns greation of:	een whe	en Na_2SO_3 is added to it due to the			
	(A)	$CrSO_4$	(B)	$Cr_2(SO_4)_3$			
	(C)	$\operatorname{CrO_4^{2^-}}$	(D)	$Cr_2(SO_3)_3$			
168.	The d Whic numb (A)	l-electron configurations of Cr^{2+} , Mn^{2+} , Fe^{2+} h one of the following complexes will exhib pers of Cr=24, Mn=25, Fe=26, Co=27) $[Cr(H_2O)_6]_{-}^{2+}$	and Co it minin (B)	$^{2+}$ are d ⁴ , d ⁵ , d ⁶ and d ⁷ , respectively. num paramagnetic behavior? (atomic $[Mn(H_2O)_6]^{2+}$			
	(C)	$\left[\mathrm{Fe}(\mathrm{H}_{2}\mathrm{O})_{6}\right]^{2+}$	(D)	$[Co(H_2O)_6]^{2+}$			
169.	Wher is:	a 2-Bromopentane is heated with potassium of	ethoxid	e in ethanol, the major product obtained			
	(A)	2-Ethoxypentane	(B)	Pent-1-ene			
	(C)	Cis-Pent-2-ene	(D)	Trans-Pent-2-ene			
170.	Whic	h of the following undergoes nucleophilic su	ıbstituti	on exclusively by S_N^1 mechnism?			
	(A)	Chloroethane	(B)	Isopropyl chloride			
	(C)	Chlorobenzene	(D)	Benzyl chloride			
171	The n	number of possible stereoisomers for CH ₂ CH	=CHC	H ₂ CH(Br)CH ₂ is:			
1 / 1.	(A)	8	(B)	2			
	(C)	4	(D)	6			
172	2_Me	thoxy_2_methylpropage on heating with HI r	roduce	·c.			
1/2.	(A)	Methanol and sec-propyl iodide	(B)	Methyl iodide and tert-butyl alcohol			
	(C)	Methyl iodide and isobutene	(D)	Methanol and tet-butyl iodide			
172	The L	aget acidic compound among the following i					
175.	(Δ)	o-Nitrophenol	s. (B)	m-Nitrophenol			
	(\mathbf{C})	p-Nitrophenol	(D)	Phenol			
174	(0)		(2)				
1/4.	An al	kene C_7H_{14} on reductive ozonolysis gives an vetone is:	aldeny	when formula C_3H_6O and a ketone.			
	(A)	2-Butanone	(B)	2-Pentanone			
	(C)	3-Pentanone	(D)	Propanone			

175.	The increasing order of the rate of addition of HCN to the compounds i) Formaldehyde i Acetone iii) Acetophenone iv) benzophenone		
	(A) $i < iii < iii < iv$	(B) $iv < ii < iii < i$	
	(C) $iv < iii < ii < i$	(D) $iv < i < ii < iii$	
176.	The carboxylic acid that does not undergo Hell-V	ohlard-Zelinsky reaction is:	
	(A) CH ₃ COOH	(B) $(CH_3)_2CHCOOH$	
	(C) $CH_3CH_2CH_2COOH$	(D) $(CH_3)_3CCOOH$	
177.	$C_2H_5NH_2 \xrightarrow{NaNO_2/HCl} X \xrightarrow{P/Br_2} Y \xrightarrow{NH_3}$ (excess)	► Z	
	In the above sequence, Z is:		
	(A) cyanoethane	(B) ethanamide	
	(C) methanamine	(D) ethanamine	
178.	The attachment of which of the following group a value?	t para position in aniline will raise the K_b	
	(A) $-SO_3H$	(B) –OH	
	(C) –F	(D) –Br	
179.	Which of the following is an example of globular	protein?	
	(A) myosin	(B) collagen	
	(C) keratin	(D) haemoglobin	
180.	Which one of the following is synthesized in our l	body by sun rays?	
	(A) Vitamin D	(B) Vitamin B	
	(C) Vitamin K	(D) Vitamin A	
181.	Caprolactum is the is the starting material for the	synthesis of	
	(A) Nylon-6	(B) Nylon6,6	
	(C) Terylene	(D) Nylon 10	
182.	The species which can serve as an initiator for cat	ionic polymerization is	
	(A) Lithium aluminium hydride	(B) Nitric acid	
	(C) Aluminium chloride	(D) BuLi	
183.	Aspirin is an:		
	(A) analgesic	(B) antipyretic	
	(C) antimalarial	(D) Both analgesic and antipyretic	
184.	The equivalent mass of iron in the reaction 2Fe +	$3Cl_2 \rightarrow 2FeCl_3$ is:	
	(A) Half of its atomic mass	(B) One third of its atomic mass	
	(C) Same as atomic mass	(D) One fourth of its atomic mass	
185.	Which of the following sets of quantum numbers	is correct for an electron in 4f subshell?	
	(A) $n=4, l=3, m=4, s=+1/2$	(B) $n=4, l=3, m=-4, s=-1/2$	
	(C) $n=4, l=3, m=+1, s=+1/2$	(D) $n=3$, $l=2$, $m=-2$, $s=+1/2$	
186	The correct sequence of atomic radii is:		
100.	(A) Na>Mg>Al>Si	(B) Al>Si>Na>Mg	
	(C) Si>Al>Mg>Na	(D) Si>Al>Na>Mg	
187	In which of the following the bond angle around	the central atom is maximum?	
107.	(A) NH ₃	(B) NH_{4}^{+}	
	(C) PCl ₃	(D) SCl ₂	

188.	Which of the following molecule does not exist			
	(A)	NF ₃	(B)	NF ₅
	(C)	PF ₅	(D)	N_2H_4
189.	If heli	um is allowed to expand in vacuum, it liberat	es hea	t because
	(A)	It is an inert gas	(B)	It is an ideal gas
	(C)	Its critical temp. is low	(D)	It is a light gas
190.	i) H ₂ (greaction	$g) + 1/2O_2(g) \rightarrow H_2O(I) + x KJ$ ii) $H_2(g) + ons$,	1/2O ₂ ($(g) \rightarrow H_2O(g) + y KJ$; For the given two
	(A)	$\mathbf{x} > \mathbf{y}$	(B)	x < y
	(C)	$\mathbf{x} = \mathbf{y}$	(D)	$\mathbf{x} + \mathbf{y} = 0$
191.	If the l respec	bond dissociation energies of XY, X ₂ , Y ₂ (all tively and $\Delta_{\rm f}$ H of XY is -200KJmol ⁻¹ , the bor	diator d diss	mic molecules) are in the ratio 1:1:0.5, sociation energy of X_2 will be:
	(\mathbf{A})	200 K Imol^{-1}	(\mathbf{D})	100 K Imol^{-1}
	(C)	200 KJIII0I	(D)	
192.	What water what water among (A)	will be the correct order of vapour pressure or these compounds water has maximum boiling Water <ether<ethanol< td=""><td>f wate ng poin (B)</td><td>r, ethanol and ether at 30^oC? Given that nt and ether has minimum boiling point. Water<ethanol<ether< td=""></ethanol<ether<></td></ether<ethanol<>	f wate ng poin (B)	r, ethanol and ether at 30 ^o C? Given that nt and ether has minimum boiling point. Water <ethanol<ether< td=""></ethanol<ether<>
	(C)	Ether <ethanol<water< td=""><td>(D)</td><td>Ethanol<ether<water< td=""></ether<water<></td></ethanol<water<>	(D)	Ethanol <ether<water< td=""></ether<water<>
193.	Which consta	of the following will occur if a 0.1M solution nt temperature?	n of a	weak acid is diluted to 0.01M at
	(A)	$[H^+]$ will decrease to 0.001M	(B)	pH will decrease
	(C)	Percentage ionization will increase	(D)	K _a will increase
194.	Which	of the following species involves the transfe	r of 51	N _A electrons per mole of it ?
	(A)	$MnO_4^2 \rightarrow MnO_4^-$	(B)	$MnO_4 \rightarrow Mn^{2+}$
	(C)	$MnO_4 \rightarrow MnO_2$	(D)	$CrO_4^2 \rightarrow Cr^{3+}$
195.	30-vol	ume hyderogen peroxide means:		
	(A)	$30\% H_2O_2$ by volume	(B)	$30g$ of H_2O_2 solution containing 1g of it
	(C)	1 cm ³ of solution liberates 30 cm ³ of O ₂ gas at STP	(D)	30 cm ³ of the solution contains one mole of H_2O_2
196.	The co	prrect sequence of covalent character is repres	sented	by:
	(A)	LiCl <nacl<becl<sub>2</nacl<becl<sub>	(B)	BeCl ₂ <licl<nacl< td=""></licl<nacl<>
	(C)	NaCl <licl< becl<sub="">2</licl<>	(D)	BeCl ₂ <nacl< licl<="" td=""></nacl<>
197.	Which	of the following is known as pyrene?		
	(A)	CCl ₄	(B)	CS_2
	(C)	S ₂ Cl ₂	(D)	Solid CO ₂
198.	The m	ost stable carbocation amongst the following	is:	
	(A)	$(CH_3)_2CH^+$	(B)	Ph_3C^+
	(C)	$CH_3CH_2^+$	(D)	$CH_2 = CH - CH_2^+$

- 199. The molecule that will have dipole moment is:
 - (A) 2,2-Dimethylpropane(C) Trans-2-Butene

- (B) Cis-2-Butene
- (D) 2,2,3,3-Tetramethylbutane
- 200. Of the five isomeric hexanes, the isomer which can give two monochlorinated compound is:
 - (A) 2-Methylpentane
 - (C) 2,3-Dimethylbutane

- (B) 2,2-Dimethylbutane
- (D) n-Hexane

Sr. No	Question	
1.	Which among the following crop has epigeal ge (A) Sunflower (C) Rice	rmination? (B) Chickpea (D) Pearl millet
2.	Which fraction of soil organic matter is soluble(A) Humic acid(C) Hymatomelonic acid	in both alkali and acid: (B) Fulvic acid (D) Humin acid
3.	Nitrogen use efficiency in rice can be increased(A) Delayed application of N(C) Application of S-coated urea	by:(B) Use of biofertilizers(D) Application of blue green algae
4.	Which stage of sugarcane is most critical for irri(A) Germination(C) Grand growth phase	igation? (B) Formative stage (D) Ripening stage
5.	The largest producer of rapeseed-mustard in Ind	ia is
	(A) Haryana(C) Rajasthan	(B) Uttar Pradesh(D) Gujarat
6.	The term Functional or Metabolic Nutrients was(A) JV Leibig(C) DI Arnon	s proposed by: (B) DJ Nicholas (D) Mosanoba Fukuoka
7.	 Botanical name of sunnhemp is (A) Sesbania aculeata (C) Carthamus tinctorium 	(B) Trifolium alexandrinum(D) Crotolaria juncea
8.	 The upper limit of soil moisture available for pla (A) PWP (15 bars) (C) Field capacity (1/3 bars) 	ant growth is: (B) Hygroscopic coefficient (D) Gravitational potential
9.	For which fertilizer, India is fully dependent on(A) N fertilizers(C) P fertilizers	import? (B) K fertilizers (D) S fertilizers
10.	Agrostology is the branch of Agronomy that dea(A) Aromatic and medicinal crops(C) Fodder crops	als with cultivation of:(B) Non edible oilseeds(D) Green manure crops
11.	With excessive use of nitrogen in sugarcane, the(A) Increased(C) Decreased	e sugar content in juice is:(B) Remains same(D) Not affected
12.	 Bacteria responsible for nitrogen fixation in soy (A) <i>Rhizobium leguminosarum</i> (C) <i>Rhizobium phaseoli</i> 	bean is (B) Rhizobium japonicum (D) Rhizobium trifoli

13.	The m (A) (C)	nost critical stage of irrigation in maize is: Silking stage Grain development stage	(B) (D)	Tasseling stage Dough stage
14.	Nippi (A) (C)	ng in chickpea is beneficial to: Promote branching Check excessive vegetative growth	(B) (D)	Promote flowering Improve seed setting
15.	Quant (A) (C)	tity of urea required by wheat for one acre 130 110	e at a ((B) (D)	dose of 125 kg per hectare is: 90 275
16.	Congr (A) (C)	ress grass (Parthenium hysterophorus) ca Chrysoperla Zygogramma bicolorata	n be c (B) (D)	ontrolled by insect: Dactylopius tomentosus Bacillus thuringiensis
17.	Applie leads (A) (C)	cation of organic material with wider C:N to: N immobilization Immediate release in N	(B) (D)	(usually more than (20:1) to soil N leaching N mineralization
18.	Heavy (A) (C)	y shedding of buds and bolls in cotton occ Deficiency of N in soil Deficiency of P in soil	curs d (B) (D)	ue to: Water stress at bud formation stage Excess of N is soil
19.	'Whip (A) (C)	tail' is brassica is due to the deficiency of Calcium Manganese	of: (B) (D)	Magnesium Zinc
20.	Whicl (A) (C)	h kind of soil mineralogy has the highest Kaolinite Montmorillonite	'catio(B)(D)	n exchange capacity': Illite Humus
21.	Optim (A) (C)	num row spacing for fodder crops is: 30 cm 45 cm	(B) (D)	60 cm 75 cm
22.	The b (A) (C)	alance sheet of a dairy farm represent: Assets Both (A) and (B)	(B) (D)	Liabilities None of these
23.	Main (A) (C)	limitation in keeping farm records in Indi Illiteracy Big size of holding	a is: (B) (D)	Nature of farming None of these
24.	Profit (A) (C)	and loss account is a type of: Personal account Nominal account	(B) (D)	Real account None of these
25.	Which (A) (C)	h is the most prominent book for keeping Journal Cash book	farm (B) (D)	records and accounts: Ledger Purchase register

26.	The list of all the physical property of a business along with their values at a specific point of time is known as:				
	(A)	Assets	(B)	Liabilities	
	(C)	Farm inventory	(D)	None of these	
27.	The c know	decline in value of assets due to usage, acc	eident	al damage and time obsolescence is	
	(A)	Appreciation	(B)	Depreciation	
	(C)	Interest	(D)	None of these	
28.	Whic	th of the following is not a component of the	farm l	ousiness:	
	(A)	Capital	(B)	Land	
	(C)	Market	(D)	Labour and management	
29	Oueer	n of Fruits is [.]			
_>.	(A)	Mango	(B)	Apple	
	(C)	Litchi	(D)	Banana	
20	Low	abilling poors are trained by:			
30.	(Δ)	Espaliar system	(\mathbf{R})	Centre leader system	
	(\mathbf{C})	Modified leader system	(D)	Y trellies system	
21	(C)		(2)		
31.	Wind	break established in the orchards is of:			
	(A)	Jamun	(B)	Jhatti Khatti	
	(C)	Karonda	(D)	Galgal	
32.	Straw	berry is propagated through:			
	(A)	Stolon	(B)	Runners	
	(C)	Crown	(D)	Suckers	
33.	Epico	tyl grafting is commonly done in:			
	(Â)	Guava	(B)	Litchi	
	(C)	Pear	(D)	Mango	
34	Daisv	ris cross between			
54.	(A)	Fortune x Fremont mandarin	(B)	King x Willow leaf	
	(C)	Citrus grandis Osbeck × Citrus	(D)	Sweet orange x <i>C</i> trifoliata	
		Paradisi Macf.			
35.	Aruni	ka is cross between:			
	(A)	Dashehari x Neelum	(B)	Neelum x Dashehari	
	(C)	Amrapali x Vanraj	(D)	Sensation x Amrapali	
36	Phyto	<i>phthora</i> is controlled with the application of:			
50.	(A)	Ridomil	(B)	Bayleton	
	(C)	c. M 45	(D)	All of these	
27	V 11				
51.	r ello	w pigment in papaya fruit is: Xanthophyll	(D)	Carotene	
	(\mathbf{A})	I veonene	(\mathbf{D})	Caricaxanthin	
	(\mathbf{C})	Lycopene	(D)	Сансаланини	

38.	Which (A) (C)	h garden is also referred as 'Nature in Miniatu Japanese English	ure: (B) (D)	Mughals Persian
39.	Tree v (A) (C)	with drooping inflorescence is: Jacaranda mimosaefolia Bassia latifolia	(B) (D)	Salyx baylonica Kigelia pinnata
40.	Red s (A) (C)	carlet is a cultivar of: Radish Onion	(B) (D)	Carrot Turnip
41.	Whic (A) (C)	h of the following is a climacteric fruit? Muskmelon Both A and B	(B) (D)	Tomato None of these
42.	Sun s (A) (C)	calding incidence usually occurs in: Brinjal Muskmelon	(B) (D)	Tomato Cauliflower
43.	Sex e (A) (C)	expression in pointed gourd is: Monoecious Dioecious	(B) (D)	Andromonoecious Hermaphrodite
44.	Whic (A)	h of the following soil is most suitable for Sandy	r vege (B)	stables? Sandy Loam
	(C)	Clay loam	(d)	Clay
45.	The s (A) (C)	eed required for one hectare sowing of ca 1-2 kg 4-5 kg	rrot is (B) (D)	5 10-15 kg 15-20 kg
46	The n	nain reason for blanching of fruits and vegetal	hles is	
10.	(A) (C)	To make them soft To make the products taste better	(B) (D)	To inactivate enzymes For long term preservation of products
47.	What (A) (C)	is Canning Placing of foods in sealed metal containers Placing cans in retorts	(B) (D)	Storage of foods in hermetically sealed containers None of these
48.	What (A) (C)	is Brine A solution of sugar and water A solution of vinegar and water	(B) (D)	A solution of salt and water An additive used in food processing

49.	The most economical way of drying fruits and vegetables is				
	(A)	Solar drying	(B)	Oven drying	
	(C)	Mechanical drying	(D)	None of these	
50.	Prese	ervative used in tomato Ketchup is			
	(A)	Potassium Metabisulphite	(B)	Sodium Benzoate	
	(C)	Citric acid	(D)	None of these	
51.	While	e walking on smooth surface one should take	small	steps to ensure	
	(A)	Large friction	(B)	Small friction	
	(C)	Larger normal force	(D)	Smaller normal force	
52.	What and ti	happens to a vehicle travelling in an unbank ires suddenly disappears	ed curv	ved path if the friction between the road	
	(A)	Moves along tangent	(B)	Moves radially in	
	(C)	Moves radially out	(D)	Moves along the curve	
53.	A bal chang (A)	Il of mass 0.2 kg strikes an obstacle and move ges from 20m/s to 10m/s the magnitude of im $2\sqrt{7}$	es at 60 pulse 1 (B)	2^{0} to its initial direction. If its speed received by the ball isNs $2\sqrt{3}$	
	(C)	2√5	(D)	$3\sqrt{2}$	
54.	A spa of ma	accecraft of mass 2000kg moving with 600 m/ ass 500 kg is stationary. The velocity of other	s sudde part ir	enly explodes into two pieces. One piece n m/s is	
	(A)	600	(B)	800	
	(C)	1500	(D)	1000	
55.					
	16	5 kg 8 kg 4 kg ◀ 140 N The	force of	on 16 kg is?	
	(A)	140N	(B)	120N	
	(C)	100N	(D)	80N	
50	(0)				

56. A man of mass 40 kg is at rest between the walls. If coeff. of friction between man and wall is 0.8, find the normal reaction exerted by wall on man (take g = 10 m/s/s)

	h	
	Find minimum height in terms of D to comple	ete the loop
	(A) 7D/4 (C) 5D/4	(B) 9D/4(D) 3D/4
58.	 Gravitational force between two bodies is F. T liquid of specific gravity 3. The gravitational f (A) F/9 (C) F 	The space around the mass is now filled with a force will be (B) 3F (D) F/3
59.	A man weighs 75 kg on the surface of earth. H(A) infinity(C) zero	His weight on the geostationary satellite is (B) 150kg (D) 75/2 kg
60.	g at a depth of 1600 km inside the earth in m/ (A) 6.65 (C) 8.65	/s/s is (B) 7.35 (D) 4.35
61.	A block of mass 19 M is suspended by a string embedded in it. If the block completes the ver (A) 140 (C) $20\sqrt{9.8}$	g of length 1m. A bullet of mass M hits it and gets retical circle the velocity of bullet in m/s is (B) $20\sqrt{19.6}$ (D) 20
62.	 A rubber ball falls from a height of 4m and relimpact is (A) 20 (C) 23 	bounds to 1.5m. The % loss of energy during the (B) 62.5 (D) 60
63.	 25 kg of sand is deposited each second on a correquired to maintain the belt in motion is (A) 2600W (C) 325W 	onveyor belt moving at 10m/s. The extra power (B) 250W (D) 2500W
64.	A uniform rod of mass M and length L standir slipping at the bottom. The moment of inertia (A) ML ² /3 (C) ML ² /9	ng vertically on a horizontal floor falls without will be (B) $ML^2/6$ (D) $ML^2/12$
65.	If the velocity of C.M of a rolling body is V, the second	then velocity of highest point in the body will be (B) V (D) $V/\sqrt{2}$

57.

66.	The an of the	ngular momentum of two rotating bodies are ir rotational K.E is	equal.	If the ratio of their M.I is 1:4, the ratio
	(A)	1:2	(B)	2:1
67.	(C) The le	Evel of water in a tank is 5m. A hole 1 cm^2 is	(D) made	4:1 at the bottom. The rate of leakage in m^3
	/s is (t (A)	ake $g = 10 \text{ m/s/s}$) 10^{-3}	(B)	10 ⁻⁴
68.	(C) Two b	10 locks A and B float in water. A floats with 1.	(D) /4 th of	10^{-2} its volume immersed and B floats with
	$3/5^{\text{th}}$ c	of its volume immersed. The ratio of their den	(B)	is 12.5
	(\mathbf{C})	3:20	(D) (D)	20:3
69.	The te liquid	erminal velocity of a spherical ball of lead of varies with R such that	radius	R is V while falling through a viscous
	(A) (C)	V/R is constant V is constant	(B) (D)	VR is constant V/R^2 is constant
70.	A hyd	raulic press uses a piston of 100 cm ² to exert a piston that supports a mass of 2000 kg is (tak	a force	e of 10^7 dynes on water. The area of the $10m/s/s$
	(A)	100cm ²	(B)	10^9 cm^2
	(C)	$2 \text{ x } 10^4 \text{ cm}^2$	(D)	$2 \times 10^{10} \text{ cm}^2$
71.	When throug The ve	kerosene and coconut oil of coeff. of viscosi gh the same pipe, under same pressure differe olume of kerosene that flows is	ty 0.00	02 and 0.0154 Ns/m ² are followed ad same time collects 1 lit of coconut oil.
	(A) (C)	5.5 lit 7.7 lit	(B) (D)	6.6 lit 8.8 lit
72.	There	is a circular hole in metal plate. When the plate	ate is l	neated the radius of the hole becomes
	(A) (C)	increased unchanged	(B) (D)	decreased depends on metal
73.	Specit	fic heat of a substance depends on 1. Nature of the substance	of subs	stance. 2. Mass of substance. 3. Heat
	(A)	Only one is correct	(B)	Both 1 and 2 are correct
	(C)	All are correct	(D)	Only 1 and 3 are correct
74.	In a gi	ive process dW=0, dq is <0 then for a gas Temperature increases	(B)	Volume decreases
	(C)	Pressure increases	(D)	Pressure decreases
75.	The et	fficiency of carnot engine depends on		
	(A) (C)	Source temperature	(B) (D)	Both B and C
76.	A 200 with e	turn coil of self inductance 30 mH carries a cach turn of coil	curren	t of 5 mA. Find the magnetic flux linked
	(A)	$7.5 \times 10^{-7} \text{Wb}$	(B)	$1.6 \times 10^{-7} \text{Wb}$
77	(C) The in	3 x 10 Wb	(D)	$1.5 \times 10^{-7} \text{Wb}$
//.	time t	he current will be maximum?	151 =	$2 \sin(100 \pi t + \pi/3)$ A. At what first
	(A)	1/100 s 1/500 s	(B)	1/200 s
	(\mathbf{C})	1/300 5	(D)	1.5

What in electric system represents force in mechanical system ? 78.

(A)	L	(B)	Ι	
(C)	1/C	(D)	0	

- A capacitor of 1 µF is charged with 0.01C of electricity. How much energy is stored in it? 79.
 - (A) 30 J (B) 40 J
 - 50 J (D) 60 J (C)

An electromagnetic wave is travelling in vacuum with a speed of 3 x 10^8 m/s. Find the velocity in 80. a medium having relative electric and magnetic permeability 2 and 1, respectively. (A) $3/\sqrt{2} \times 10^8 \text{m/s}$ (B) $1.5 \times 10^8 \text{m/s}$ (D) No change

- $2 \times 10^8 \text{m/s}$ (C)
- Trace the path of ray of light passing through a glass prism as shown in the figure. If the 81. refractive index of glass is $\sqrt{3}$, find out the value of angle of emergence from prism.

(A)	30	(B)	45
(C)	60	(D)	75

- Light wave from two coherent sources of intensities in ratio 64:1 produces interference. Calculate 82. the ration of maximum and minima of the interference pattern.
 - (A) 8:1 (B) 64:1 9:7 (D) 81:49 (C)
- In young's experiment, the width of the fringes obtained with light of wavelength 6000 A° is 2 83. mm. What will be the fringe width, if the entire apparatus is immersed in a liquid of refractive index 1.33?

(A)	1 mm	(B)	1.5 mm
(C)	2 mm	(D)	2.5 mm

84. Unpolarised light is incident on plane glass surface. What should be the angle of incidence in degrees, so that the reflected and refracted rays are perpendicular to each other?

(A)	37	(B)	47
(C)	57	(D)	67

Determine the de-Broglie wavelength associated with an electron, accelerated through a potential 85. difference of 100 V.

(A)	1.227A°	(B)	12.27A°
(C)	122.7A°	(D)	1227A°

86. A particle with rest mass m₀ is moving with velocity c. What is the de-Broglie wavelength associated with it?

(A)	infinity	(B)	zero
(C)	radio wave	(D)	X ray

87.

Which among the following series gives visible light? Lyman (B) Balmer (A)

Bracket (D) None of these (C)

88. Identify the logic operation performed by this circuit

- The number of silicon atoms per m³ is $5 \ge 10^{28}$. This is doped simultaneously with $5 \ge 10^{22}$ atoms per m³ of arsenic and $5 \ge 10^{20}$ atoms per m³ of indium. Calculate the number of holes, given that 89. $n_i = 1.5 \times 10^{16} \text{ m}^{-3}$ $4.54 \times 10^9 \text{m}^{-3}$ (A)
 - $1.5 \ge 10^{16} \text{m}^{-3}$ (C)

(B)	$4.95 \text{ x } 10^{22} \text{m}^{-3}$
(D)	$5 \ge 10^{28} \text{m}^{-3}$

- Two charges $+5\mu C$ and $-5\mu C$ are placed 5 mm apart. Determine E at a point 10 cm from centre 90. on the positive charge side along the axial line.
 - $4.5 \times 10^5 \text{N/C}$ (B) $4.5 \times 10^5 \text{NC}$ (A) 4.5 x 10⁻⁵N/C (D) $4.5 \times 10^{-5} \text{NC}$ (C)
- If the Gaussian surface is so chosen that there are some charges inside and some outside than the 91. electric field is due to
 - Only inside charges (B) Only outside charges (A)
 - (C) All the charges

r

- Cannot determine (D)
- 92. The following is a diagram showing the variation of E with r from centre of uniformly charge spherical shell of radius R

93. Net capacitance of 3 identical capacitor in series is 1 μ F. What is the net capacitance in μ F if connected in parallel?

(A)	3	(B)	6
(C)	9	(D)	12

94. An inductor of 5H carries a steady current of 2A. In what time if the current is made zero can a 40V self induced emf be produced in the inductor.

(A)	2s	(B)	1s
(C)	0.5s	(D)	0.25s

95. A cell of emf E and internal resistance r gives 0.5A with R=12 ohms and 0.25 with R = 25 ohms. Its internal resistance in ohms will be

(A)	0.5	(B)	1
(C)	2	(D)	3

96.

(A)

(C)

97. Two identical circular loops P and Q of radius r are placed in parallel planes with same axis at a distance of 2r. Find the midpoint of the axis between them if same current I flows through both loops.

(A)	$\mu_0 I/2^{3/2} r$	(B)	$\mu_0 2 I/2^{3/2} r$
(C)	$\mu_0 I/4\pi r$	(D)	Cannot be determined

98. A block of mass 4 kg is kept on a rough horizontal surface. The coefficient of static friction is 0.8. If a force of 19 N is applied on the block parallel to the floor, then the force of friction between the block and floor is:

(A)	19N	(B)	18 N
(C)	16N	(D)	9.8N

99. Current in a circuit falls steadily from 2A to 0A in 10 ms. Calculate L if emf induced is 200V.

(A)	1H	(B)	2H
<pre>/</pre>		(—)	

(C) 3H (D) 4H

100. Self inductance of the air core inductor increases from 0.01 mH to 10 mH on introducing an iron core. What is the relative permeability of the core used?

- (A)500(B)800(C)900(D)1000
- 101. Among the following, the most stable complex is (A) $[Fe (H_2O)_6]^{3+}$ (B) $[Fe (NH_3)_6]^{3+}$ (C) $[Fe (C_2O_4)_3]^{3-}$ (D) $[Fe (Cl)_6]^{3-}$
- 102. Which is the correct coordination number (C.N) and oxidation number (O.N) of the transition metal atom in $[Co(NH_3)_2(H_2O)_2Cl_2]^+$?
 - (A)C.N=3, O.N=+1(B)C.N=4, O.N=+2(C)C.N=6, O.N=+1(D)C.N=6, O.N=+3
- 103. In a solid, oxide ions are arranged in ccp, cations A occupy one sixth of the tetrahedral voids and cation B occupy one third of the octahedral voids. The formula of the solid is:
 (A) ABO₃
 (B) A₃BO
 - $\begin{array}{ll} (A) & ABO_3 \\ (C) & AB_3O \end{array}$
 - (D) $A_3B_3O_3$
- 104. On mixing acetone to methanol some of the hydrogen bonds between methanol molecules break. Which of the following statements is correct about the above process?
 - (A) At specific composition methanol acetone mixture will form minimum boiling azeotrope and show positive deviation from Raoult's law
 - (C) At specific composition methanole acetone mixture will form minimum boiling azeotrope and show negative deviation from Raoult's law
- (B) At specific composition methanol acetone mixture will form maximum boiling azeotrope and show positive deviation from Raoult's law
- (D) At specific composition methanole acetone mixture will form maximum boiling azeotrope and show negative deviation from Raoult's law
- 105. $K_{\rm H}$ value for argon, carbon dioxide, formaldehyde and methane gases are 40.39, 1.67, 1.83 X 10⁻⁵ and 0.413, respectively. The correct arrangement of these gases in the order of their increasing solubility is:
 - (A) formaldehyde<methane<carbon dioxide<argon
 (B) formaldehyde< carbon dioxide
 <methane<argon
 (D) argon <methane <carbon dioxide
 <methane< formaldehyde
- 106. The number of faradays of electricity required for electrolytic conversion of the mole of nitrobenzene to aniline is:
 - (A) 3F (B) 4F (C) 6F (D) 5F
- 107. The positive value of the standard electrode potential of Ag^+/Ag indicates that:
 - $\begin{array}{ccc} (A) & \mbox{This redox couple is a stronger reducing} & (B) & \mbox{This redox couple is a stronger} \\ & \mbox{agent than H^+/H_2 couple} & & \mbox{oxidizing agent than H^+/H_2 couple} \end{array}$

	(C) Ag can displace H_2 from acid	(D)	Ag can displace H ₂ from base
108.	.08. Milk is refrigerated in order to slow the rate of decomposition by bacterial action. The de reaction rate is due to:		
	 (A) A decrease in surface area (C) A decrease in the fraction of particles possessing sufficient energy 	(B) (D)	A decrease in \triangle H for the reaction The introduction of an alternative pathway with greater activation energy.
109.	 Which of the following statements is not correct? (A) The rate of a reaction decreases with passage of time as concentration of reactants decrease 	(B)	The instantaneous rate a reaction is same at any time during the reaction
	(C) For a zero order reaction the concentration of reactants remains changed with passage of time	(D)	The rate of a reaction decreases with increase in concentration of reactant (s)
110. Which of the following gases shows the lowest adsorption per gram of char			n per gram of charcoal? The critical
	(A) H_2 (33K) (C) SO_2 (630K)	(B) (D)	CH ₄ (190K) CO ₂ (304K)
111.	 Freundlich adsorption isotherm is given by the exp statements are false? i. When 1/n=0, the adsorption is indeper ii. When n=0, the plot of x/m vs p graph iii. When 1/n=0, the adsorption is directly iv. When n=0, plot of x/m vs p is a curve (A) i and ii 	oressio ndent c is a lin y propc (B)	n x/m=kp ^{1/n} . Which of the following of pressure. he parallel to x axis. ortional to pressure. ii and iv
	(C) i and iii	(D)	all are false
112.	In the extraction of chlorine by electrolysis of an a the following statements are true? i. $\triangle G^0$ for the overall reaction is positiviti. ii. $\triangle G^0$ for the overall reaction is negativiti. iii. E^0 for the overall reaction is positive iv. E^0 for the overall reaction is negative (A) i and iv	queou: ve ve (B)	s solution of sodium chloride, which of
	(C) ii and iii	(D)	iii and iv
113.	Which of the following pairs of ions are isoelectro (A) NO_2^+ and NO_3^- (C) XeO_3^{2-} and PCl_3	nic and (B) (D)	d isostructural ? ClO_3^- and ICl_4^- ClO_3^- and SO_3^{2-}
114.	 Which of the following hydrides is the strongest re (A) NH₃ (C) AsH₃ 	educing (B) (D)	g agent? PH ₃ SbH ₃
115.	Consider the reactions,		

 $\frac{\text{Zn + Conc. HNO_3 (hot)}}{12 + C \land D} = \frac{\text{Zn (NO_3)}_2 + \text{X} + \text{H}_2\text{O}}{12 + C \land D}$ i.
	ii.	$Zn + dil. HNO_3 (cold)$	$Zn (NO_3)_2$	$+ Y + H_2O$
	(A)	N ₂ O, NO	(B)	NO ₂ , NO ₂
	(C)	N_2, N_2O	(D)	NO ₂ , NO
116.	When manga	KMnO ₄ acts as an oxidizing anese decreases by:	agent in weakly alkal	ine medium, the oxidation number of
	(A)	1	(B)	2
	(C)	3	(D)	5
117.	Acidi: forma	fied potassium dichromate sol	ution turns green whe	en Na_2SO_3 is added to it due to the
	(A)	CrSO ₄	(B)	$Cr_2(SO_4)_3$
	(C)	$\operatorname{CrO_4^{2-}}$	(D)	$Cr_2(SO_3)_3$
118.	The d Whicl numb	-electron configurations of Cr h one of the following comple ers of Cr=24, Mn=25, Fe=26,	²⁺ , Mn ²⁺ , Fe ²⁺ and Co xes will exhibit minin Co=27)	²⁺ are d ⁴ , d ⁵ , d ⁶ and d ⁷ , respectively. num paramagnetic behavior? (atomic
	(A)	$[Cr(H_2O)_6]^{2+}$	(B)	$[Mn(H_2O)_6]^{2+}$
	(C)	$[Fe(H_2O)_6]^2$	(D)	$[Co(H_2O)_6]^2$
119.	When	2-Bromopentane is heated w	ith potassium ethoxid	e in ethanol, the major product obtained
	(A)	2-Ethoxypentane	(B)	Pent-1-ene
	(C)	Cis-Pent-2-ene	(D)	Trans-Pent-2-ene
120.	Which	h of the following undergoes	nucleophilic substituti	on exclusively by S_N^{1} mechnism?
	(A) (C)	Chloroethane	(B) (D)	Isopropyl chloride Benzyl chloride
121	The n	umber of possible stereoisom	ers for CH ₂ CH=CHC	H ₂ CH(Br)CH ₂ is:
121.	(A)	8	(B)	2
	(C)	4	(D)	6
122.	2-Met	hoxy-2-methylpropane on he	ating with HI produce	S:
	(A) (C)	Methyl iodide and isobutene	(D)	Methanol and tet-butyl iodide
123.	The le	east acidic compound among t	he following is:	-
	(A)	o-Nitrophenol	(B)	m-Nitrophenol
	(C)	p-Nitrophenol	(D)	Phenol
124.	An all	kene C_7H_{14} on reductive ozon	olysis gives an aldehy	de with formula C_3H_6O and a ketone.
	(A)	2-Butanone	(B)	2-Pentanone
	(C)	3-Pentanone	(D)	Propanone
125.	The ir Aceto	ncreasing order of the rate of a ne iii) Acetophenone iv) benz	addition of HCN to the sophenone	e compounds i) Formaldehyde ii)
	(A)	1<11 < 111< 1V	(B) (D)	1V < 11 < 111 < 1
126	The e	IV MIN IN I	(D) Adarga Hall Vahlard	Zalinsky reaction is:
120.	(A)	CH ₃ COOH	(B)	(CH ₃) ₂ CHCOOH
	(C)	CH ₃ CH ₂ CH ₂ COOH	(D)	(CH ₃) ₃ CCOOH

127.	NaNO ₂ /HCl P/Br ₂ NH ₃	7	
	$C_2H_5NH_2 \longrightarrow X \longrightarrow Y \longrightarrow$ (excess)	L	
	In the above sequence, Z is:		
	(A) cyanoethane(C) methanamine	(B) ethanamide(D) ethanamine	
128.	The attachment of which of the following group at	para position in aniline will r	aise the K _b
	value? $(A) = SO_2H$	(B) –OH	
	$\begin{array}{ccc} (A) & & 503H \\ (C) & -F \end{array}$	(D) $-Br$	
129.	Which of the following is an example of globular p	otein?	
	(A) myosin	(B) collagen	
	(C) keratin	(D) Haemoglobin	
130.	Which one of the following is synthesized in our b	dv bv sun ravs?	
	(A) Vitamin D	(B) Vitamin B	
	(C) Vitamin K	(D) Vitamin A	
131.	Caprolactum is the is the starting material for the s	nthesis of	
	(A) Nylon-6	(B) Nylon6,6	
	(C) Terylene	(D) Nylon 10	
132.	The species which can serve as an initiator for cati	nic polymerization is	
	(A) Lithium aluminium hydride	(B) Nitric acid	
		(D) Bull	
133.	Aspirin is an: (A) $analogoida$	(D) antinuratia	
	(C) antimalarial	(D) Both analgesic and an	tipvretic
134	The equivalent mass of iron in the reaction $2Fe + 3$	$C_{l_{a}} \rightarrow 2FeC_{l_{a}}$ is:	I J
151.	(A) Half of its atomic mass	(B) One third of its atomi	c mass
	(C) Same as atomic mass	(D) One fourth of its atom	nic mass
135.	Which of the following sets of quantum numbers is	correct for an electron in 4f	subshell?
	(A) $n=4, l=3, m=4, s=+1/2$	(B) $n=4, l=3, m=-4, s=-1$	/2
	(C) $n=4, l=3, m=+1, s=+1/2$	(D) $n=3, l=2, m=-2, s=+1$./2
136.	The correct sequence of atomic radii is:		
	(A) Na>Mg>Al>Si (C) Si>Al>Ma>Na	(B) $Al > Si > Na > Mg$	
	(C) SI-AI-Mg-Na	(D) SI-AI-INA-Mg	
137.	In which of the following, the bond angle around the (A) NH	e central atom is maximum? (B) NH $^+$	
	$\begin{array}{c} (A) & NII_3 \\ (C) & PCl_3 \end{array}$	(D) SCl_2	
120	Which of the following molecule does not exist	(2) 2012	
130.	(A) NF_2	(B) NF_5	
	(C) PF_5	(D) N_2H_4	
139.	If helium is allowed to expand in vacuum, it libera	es heat because	
	(A) It is an inert gas	(B) It is an ideal gas	
	(C) Its critical temp. is low	(D) It is a light gas	
140.	i) $H_2(g) + 1/2O_2(g) \rightarrow H_2O(I) + x \text{ KJ}$ ii) $H_2(g) + i$	$/2O_2(g) \rightarrow H_2O(g) + y \text{ KJ};$	For the given two
	14 P C A [

reactions.

- $(A) \quad x > y \qquad (B) \quad x < y$
- (C) x = y (D) x + y = 0

141. If the bond dissociation energies of XY, X_2 , Y_2 (all diatomic molecules) are in the ratio 1:1:0.5, respectively and $\Delta_t H$ of XY is -200KJmol⁻¹, the bond dissociation energy of X_2 will be:

(A) 400 KJmol^{-1}

- (B) 300 KJmol^{-1}
- (C) 200 KJmol^{-1} (D) 100 KJmol^{-1}

What will be the correct order of vapour pressure of water, ethanol and ether at 30° C? Given that 142. among these compounds water has maximum boiling point and ether has minimum boiling point. (A) Water<ether<ethanol **(B)** Water<ethanol<ether (C) Ether<ethanol<water (D) Ethanol<ether<water 143. Which of the following will occur if a 0.1M solution of a weak acid is diluted to 0.01M at constant temperature? (A) [H⁺] will decrease to 0.001M (B) pH will decrease (D) (C) Percentage ionization will increase K_a will increase Which of the following species involves the transfer of 5N_A electrons per mole of it ? 144. $MnO_4^{2-} \rightarrow MnO_4^{--}$ (B) $MnO_4^- \rightarrow Mn^{2+}$ (A) (D) $CrO_4^{2-} \rightarrow Cr^{3+}$ $MnO_4^- \rightarrow MnO_2$ (C) 145. 30-volume hyderogen peroxide means: (B) 30% H₂O₂ by volume 30g of H₂O₂ solution containing 1g of (A) it 30 cm^3 of the solution contains one 1 cm³ of solution liberates 30 cm³ of O_2 (C) (D) gas at STP mole of H_2O_2 146. The correct sequence of covalent character is represented by: LiCl<NaCl<BeCl₂ BeCl₂<LiCl<NaCl (A) **(B)** NaCl<LiCl< BeCl₂ BeCl₂<NaCl<LiCl (C) (D) 147. Which of the following is known as pyrene? (A) CCl_4 (B) CS_2 (C) S_2Cl_2 Solid CO₂ (D) 148. The most stable carbocation amongst the following is: Ph_3C^+ $(CH_3)_2CH^+$ (A) **(B)** (C) $CH_3CH_2^+$ (D) $CH_2 = CH - CH_2^+$ 149. The molecule that will have dipole moment is: (A) 2,2-Dimethylpropane Cis-2-Butene **(B)** 2,2,3,3-Tetramethylbutane (C) Trans-2-Butene (D) 150. Of the five isomeric hexanes, the isomer which can give two monochlorinated compound is: (A) 2-Methylpentane **(B)** 2.2-Dimethylbutane 2.3-Dimethylbutane (C) (D) n-Hexane 151. Crossing over occurs in meiosis I during: Metaphase (A) (B) Telophase

(C) Anaphahse (D) Pachytene

152.	Power house of the cell:(A) Golgi body(C) Mitochondria	(B) Ribosomes(D) Lysosomes
153.	Genetics is the study of:(A) Heredity(C) Both A and B	(B) Variation(D) None of these
154.	In sex -linked inheritance, characters are passe(A) Daughter(C) Both daughter and son	ed from father to the grandsons through his: (B) Son (D) Any of them
155.	Which of the following bases is not present in(A) Uracil(C) Adenine	RNA: (B) Thymine (D) Cytosine
156.	Mendel's principle of independent assortment(A) Monohybrid cross(C) Both A and B	can be demonstrated through:(B) Dihybrid cross(D) Any of them
157.	 On hydrolysis, maltose gives (A) glucose + glucose (C) glucose + fructose 	(B) glucose + lactose(D) glucose + galactose
158.	A dipeptide has peptide bonds.(A) Three(C) Two	(B) One(D) None of them
159.	Which vitamin can be synthesized by green pl but not by mammals?(A) Ascorbic acid(C) Thiamine	ants and various micro-oraganisms(B) Pantothenic acid(D) Retinol
160.	Bacterial cell wall is made up of:(A) Chitin(C) Peptidoglycan	(B) Cellulose(D) All the above
161.	Plant viruses are generally of:(A) RNA(C) mRNA	(B) DNA(D) tRNA

^{162.} Gram positive aerobic, filamentous bacteria with hyphae are known as:(A) Algae(B) Actinomycetes

	(C)	Bacteria	(D)	Fungi
163.	Conv (A) (C)	rersion of organic matter in to simple inor Immobilization Co ₂ fixation	ganic (B) (D)	forms is called: Mineralization Nitrification
164.	Exces (A) (C)	ss carbon (> C/N ratio) leads to rate of de Slow Optimum	compo (B) (D)	osition: Fast None
165.	N ₂ fix (A) (C)	xing cells of cyanobacteria are known as: Cyst Spores	(B) (D)	Akinetes Heterocyst
166.	Lives (A) (C)	tock is important source of: Milk Manure	(B) (D)	Meat All of these
167.	Dairy (A) (C)	cattle and buffalo can be called as: Caprine Bovine	(B) (D)	Ovine Equine
168.	Best (A) (C)	breed of buffalo in India: Nili Ravi Surti	(B) (D)	Murrah Toda
169.	Best I (A) (C)	layer poultry strain is: WLH Karaknath	(B) (D)	Minorca Sutlez
170.	Norm (A) (C)	nal birth weight (Kg) of healthy buffalo c 20 40	alf is: (B) (D)	30 50
171.	Numl (A) (C)	ber of teats in buffalo: 2 6	(B) (D)	4 8
172.	Dry r (A) (C)	natter requirement (kg) of a cow weighing 8 12	g 400 (B) (D)	kg is: 10 14
173.	Green (A) (C)	n fodder requirement of adult cattle (kg): 30 50	(B) (D)	40 60

174. Which of the following crops is the best for hay making: (A) Jowar (B) Bajra (D) Oat (C) Berseem 175. Normal body temperature of healthy poultry bird (°F): 37.0 (A) (B) 98.6 (D) 117.0 (C) 107.0 176. ICAR-National Dairy Research Institute (NDRI) is located at: (A) Karnal (B) New Delhi (C) Bareilly (D) Anand 177. Excessive gas accumulation in rumen indicates: Impaction (B) Bloat (A) (C) Milk fever (D) Foot and Mouth Disease 178. Most fatal disease in farm animals is: Foot and Mouth Disease (B) HS (A) (C) Rinderpest (D) Anthrax 179. Semen is stored in liquid nitrogen at (°C): (A) -79 (B) -196 79 (D) 196 (C) 180. During Artificial Insemination (AI) semen should be deposited Vagina (B) Cervix (A) (C) Uterus (D) Fallopian tube 181. Seeds of groundnut contain about: 25% oil and 50% protein (B) 20% oil and 40% protein (A) (C) 40% oil and 40% protein (D) 50% oil and 25% protein 182. Organic carbon is a measure of Available nitrogen in soil (A) (B) Available nutrient in soil (C) Excess of carbon in soil (D) Excess of iron in soil 183. Which among the following element is considered immobile in the plant (A) Calcium (B) Phosphorus Nitrogen (D) Magnesium (C)

184. Which among the following is recommended variety of durum wheat:(A) HD 2960 (B) WH 896

	(C)	PBW 725	(D)	WH 711
185.	Recon (A) (C)	mmended dose of nutrients for berseem (k 10 kg N, 28 kg P ₂ O ₅ 20 kg N, 40 kg P ₂ O ₅	(B) (D)	e) is: 40 kg N, 25 kg P ₂ O ₅ 20 kg N, 20 kg P ₂ O ₅
186.	Optin (A) (C)	num row spacing for cotton is: 50 cm 67.5 cm	(B) (D)	60 cm 75 cm
187.	Optin (A) (C)	num sowing time of summer moong in the March First fortnight of April	e state (B) (D)	is: Second fortnight of February End June-early July
188.	'Whit	te alkali' soil refers to:		
	(A) (C)	Acid soil Salina sodic soil	(B) (D)	Saline soil Sodic soil
189.	The e (A) (C)	xchange sodium percentage (ESP) of alka More than 15 Less than 15	ali soi (B) (D)	ls is always: Any value Less than 7.5
190.	ICAR (A) (C)	R-Central Arid Zone Research Institute is Nagpur New Delhi	locate (B) (D)	ed at: Hyderabad Jodhpur
191.	India (A) (C)	is divided in to ecological zones. 12 15	(B) (D)	10 20
192.	Recon (A) (C)	mmended seed rate (kg/ha) of dhaincha on 20 40	r sunh (B) (D)	emp for green manuring is: 30 50
193.	Recon (A) (C)	mmended seed rate for <i>spring</i> season mur 15-20 kg per acre 15-20 kg per hectare	ngbear (B) (D)	n is 25-30 kg per hectare 10 kg per hectare
194.	For tr (A) (C)	ansplanting of pearl millet (bajra) in Hary Two weeks Four weeks	/ana, (B) (D)	optimum age of seedlings is: Three weeks Five weeks
195.	Blind (A) (C)	tillage refers to: Summer ploughing Hoeing before germination	(B) (D)	Primary tillage Hoeing in standing crop rows

^{196.} Flame photometer is used for the determination of:

- (A) Nitrogen
- (C) Potassium

- (B) Phosphorus
- (D) Boron
- 197. Tetrazolium test is conducted to test the:
 - (A) Physical purity of seed
 - (C) Viability of seed

- (B) Percentage of weed seeds
- (D) Seed germination

- 198. World Food Day is celebrated on:
 - (A) 5 June(C) 28 February

- (B) 20 June
- (D) 16 October

199. Which among the following is the best and cheapest method of weed control:

- (A) Cultural measures (B) Herbicide based weed control
 - (C) Biological control

- (D) Preventive measures
- 200. Black soils in India belong to soil order:
 - (A) Alfisol
 - (C) Vertisol

- (B) Inceptisol
- (D) Oxisol

Sr.	Question					
No.						
1.	Which of the following cells in plants show totipotency					
	(A) Xylem vessels	(B)	Sieve tubes			
	(C) Meristem	(D)	Cork cells			
2.	Father of taxonomy is					
	(A) John Ray	(B)	Linnaeus			
	(C) Aristotle	(D)	Lamark			
3.	Which of the following has more characters in con	nmon				
	(A) Species	(B)	Genus			
_	(C) Class	(D)	Division			
4.	Riccia is a liverwort as it					
	(A) produces liver diseases	(B)	is present in liver			
-	(C) cures liver diseases	(D)	is like a flat lobed thallus			
5.	Gymnosperms are characterized by					
	(A) Large leaves	(B)	Ciliated sperms			
	(C) Naked ovules	(D)	Scale leaves			
6.	A root parasite is					
	(A) Cuscuta	(B)	Striga			
	(C) Brassica	(D)	loranthus			
7.	Roots that grow from any part of the plant body ot	her that	an the radicles are			
	(A) Adventitious roots	(B)	Tap roots			
	(C) Modified roots	(D)	Aerial roots			
8.	Parallel venation is a characteristic of					
	(A) Parasitic plants	(B)	Xerophytic plants			
0	(C) Legumes	(D)	Grasses			
9.	A bisexual flower which never opens in its life spa	in is ca	alled			
	(A) Cleistogamus	(B)	Heterogamus			
10	(C) Homogamus	(D)	Dichogamus			
10.	Quiescent centre is located in	(D)	Deatanay			
	(A) Shoot apex (C) Leaf apex	(D)	Root apex Pud apex			
11	(C) Leaf apex Cosporion strips occur in the cells of	(D)	Buu apex			
11.	(A) Enidermis	(B)	Exodermis			
	(C) Endodermis	(\mathbf{D})	Hypodermis			
12	Vascular hundles are absent in	(D)	Hypodellins			
12.	(A) Monocots	(B)	Dicots			
	(C) Gymnosperms	(D)	Pteridophytes			
13	Aerenchyma is derived from	(2)	i terraophytes			
10.	(A) Parenchyma	(B)	Sclerenchyma			
	(C) Phloem	(D)	Xvlem			
14.	Vascular bundle having cambium is	(-)				
	(A) closed	(B)	open			
	(C) conjoint	(D)	collateral			
15.	What do you eat in coconut					
	(A) Embryo	(B)	Mesocarp			
	(C) Entire seed	(D)	Fruit wall			
16.	Phyllode is a modification of	· /				
	(A) Flower	(B)	Bud			
	(C) Root	(D)	Petiole			

17.	Fingermillet is		
	(A) Eleusine	(B)	Setaria
	(C) Pennisetum	(D)	Sorghum
18.	Microsporophyll of Cycas is equivalent to	of	angiosperms
	(A) Sepal	(B)	Stamen
	(C) Ovary	(D)	Ovule
19.	Jackfruit is an example of		
	(A) Multiple fruit	(B)	Aggregate fruit
	(C) Simple fruit	(D)	None of these
20.	Anther wall in angiosperms contain how many w	all laver	S
	(A) 3	(B)	4
	(C) 5	(D)	6
21.	If an endosperm cell of angiosperm has 36 chrom	losomes	, the root cell should have
	(A) 18	(B)	16
	(C) 4	(D)	24
22.	Amino acid synthetase enzyme is activated by	(2)	
	(A) Mg	(B)	Cu
	(C) Zn	(D)	Fe
23	Number of net gain ATP in aerobic respiration is	(2)	
20.	(A) 2	(B)	42
	$(\Gamma) = \frac{2}{38}$	(D)	41
24	One glucose molecule partially oxidized in anaer	obic res	niration produces
<i>2</i> 1.	(Δ) 30 Δ TPs	(\mathbf{R})	38 A TPs
	(Γ) 2 ATPs	(D)	15 ATPs
25	In forest ecosystem green plants are	(D)	10/1115
23.	(A) Primary consumers	(\mathbf{R})	Primary producers
	(C) Decomposers	(D)	None of these
26	The largest cell in the embryo sac is	(D)	None of these
20.	(A) Central cell	(\mathbf{R})	Faa
	(C) Synergids	(D)	Lgg None of these
27	Double membrane is absent in	(D)	None of these
27.	(A) Mitochondria	(\mathbf{R})	Chloroplast
	(A) Mitochondria (C) Perovisome	(D)	Colgi body
28	DNA content is doubled in stage of cel	(D) Il divisio	Oolgi body
20.	(A) Prophase	(\mathbf{R})	Metanhase
	(A) Trophase (C) C phase	(D)	S phase
20	A group of individuals of different species is call	(D) ad	3- phase
29.	(A) Population	CU (P)	Community
	(A) Topulation (C) Biome	(D)	None of these
20	(C) Diome	(D)	None of these
30.	$ (A) \qquad A dening and Cugning $	(D)	Cuaning and Cutaging
	(A) Adenine and Guanne (C) Thymine and Cytoging	(D)	A daming and Thyming
21	(C) Infinite and Cytochie The normant which is chart in chloroplast is	(D)	Adenine and Thymine
51.	(A) Chlorophyll 'o'	(D)	Chlorophyll (h)
	(A) Uniorophyli a (C) Venthebell	(B)	Chlorophyll b
22	(C) Xaninpnyn Data of transministion is moosynad hy	(D)	Anthocyanine
32.	(A) Menunetar	(D)	Determenter
	(A) Manometer	(B)	Potometer
22	(C) Auxanometer	(D)	none of these
55.	I ne site of primary photochemical reaction is		Course
	(A) Stroma (C) Derivlent a it	(B)	Grana
	(C) Periplast cavity	(D)	Inner layer

(A) N. Borlaug (B) K.C. Mehta (C) M.S. Swaminathan (D) None of these 35. Plants which grow in shade are (A) Sciophytes (D) (A) Sciophytes (D) Psamophytes 36. The amount of living material in different trophic levels is called (A) Standing crop (B) Standing state (C) Upry weight (D) Biomass 37. In pond ecosystem pyramid of number is always (A) Straight (B) Linear (C) Upright (D) Inverted 38. Vegetation dominated by shrubs with few tall trees is called (A) Secule (B) Marsh (C) Grassland (D) Forest 39. Total energy produced during photosynthesis is called (A) Total biomass (B) Primary consumers (C) Kerpinary producers of the ecosystem are (A) Grassland (D) Nore of these 41. The chemical knives of DNA are (A) Ligases (D) Thanscriptases	34.	Father	of green revolution in India is		
(C) M.S. Swaminathan (D) None of these 35. Plants which grow in shade are (A) Sciophytes (D) Psamophytes 36. The amount of living material in different trophic levels is called (A) Standing state (C) Dry weight (D) B) Standing state (C) Dry weight (D) Biomass 37. In pond ecosystem pyramid of number is always (A) Straight (D) (A) Straight (D) Inverted 38. Vegetation dominated by shrubs with few tall trees is called (A) Serule (B) (C) Grassland (D) Forest 39. 70tal energy produced during photosynthesis is called (A) Total biomass (B) Net biomass (C) Grassland (D) Gross primary produced 40. Secondary produces of the ecosystem are (A) It be chemical knives of DNA are (A) Ligases (B) Polymerases (C) Foron massori (D) Basmati 43. Pusa Komal is a variety of (A)		(A)	N. Borlaug	(B)	K.C. Mehta
 35. Plants which grow in shade are (A) Sciophytes (B) Heliophytes (C) Halophytes (D) Psamophytes 36. The amount of living material in different trophic levels is called (A) Standing crop (B) Standing state (C) Dry weight (D) Biomass 37. In pond ecosystem pyramid of number is always (A) Straight (B) Linear (C) Upright (D) Inverted 38. Vegetation dominated by shrubs with few tall trees is called (A) Straight (B) Marsh (C) Grassland (D) Forest 39. Total energy produced during photosynthesis is called (A) Total biomass (B) Net biomass (C) Net primary production (D) Gross primary produced during photosynthesis is called (A) Total biomass (B) Primary consumers (C) Top consumers (D) None of these 41. The chemical knives of DNA are (A) Ligases (B) Polymerases (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Regument (B) Funiculus (C) Sona masoori (D) Hilum 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Springyra (D) Chamydomonas 47. Wallisneria usually favours (A) Spirulina (B) Volvox (C) Amazon rain forest (D) Anemophily (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) Philoern cells (D) Xylem cells 		(C)	M.S. Swaminathan	(D)	None of these
(A) Scioplytes (B) Heliophytes (C) Halophytes (D) Psamophytes 36. The amount of living material in different trophic levels is called (A) Standing crop (B) Standing state (C) Dry weight (D) Biomass 37. In pond ecosystem pyranid of number is always (A) Straight (B) Linear (C) Upright (D) Inverted 38. Vegetation dominated by shrubs with few tall trees is called (A) (A) Serule (B) Marsh (C) Grassland (D) Forest 39. Total biomass (B) Net biomass (C) Net primary production (D) Gross primary product (A) Green plants (B) Primary consumers (C) Top consumers (D) None of these 41. The chemical knives of DNA are (A) Linears (A) Igases (B) Jaya (C) Sona masoori (D) B asmati <	35.	Plants	which grow in shade are		
(C) Halophytes (D) Psamophytes 36. The amount of living material in different trophic levels is called (A) Standing state (C) Dry weight (D) Biomass 37. In pond ecosystem pyramid of number is always (A) Straight (D) (C) Upright (D) Inverted 38. Vegetation dominated by shrubs with few tall trees is called (A) Straight (A) Straight (B) Marsh (C) Grassland (D) Forest 39. Total energy produced during photosynthesis is called (A) Total biomass (A) Total biomass (B) Nert biomass (C) Not the pimary production (D) Gross primary producto 40. Stecondary producers of the ecosystem are (A) (A) Groen plants (B) Primary consumers (C) Forgensumers (D) None of these (D) Franscriptases 41. The chemical knives of DNA are (A) IR 8 (B) Jaya (C) Sona masoori (D)		(A)	Sciophytes	(B)	Heliophytes
 36. The amount of living material in different trophic levels is called (A) Standing crop (B) Standing state (C) Dry weight (D) Biomass 37. In pond ecosystem pyramid of number is always (A) Straight (B) Linear (C) Upright (D) Inverted 38. Vegetation dominated by shrubs with few tall trees is called (A) Scrule (B) Marsh (C) Grassland (D) Forest 39. Total energy produced during photosynthesis is called (A) Total biomass (B) Net biomass (C) Net primary production (D) Gross primary producers of the ecosystem are (A) Green plants (B) Primary consumers (D) None of these 41. The chemical knives of DNA are (A) Ligases (B) Polymerases (C) Endonucleases (D) Transcriptases 42. The Indian variety of rice patented by an American company is (A) IR 8 (B) Jaya (C) Sona masoori (D) Chilli 43. Pusa Komal is a variety of (A) Needicel (B) Funiculus (C) Integument (D) Chilli 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Hydrophily (D) Anemophily 45. Vallisneria usually favours (A) Spirulina (B) Volvox (C) An example of single cell protein is (A) 1986 (B) Eastern ghats (C) Anazon rain forest (D) Chamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) 1986 (B) Cambial cells (C) Pholem cells (D) Xylem cells 		(C)	Halophytes	(D)	Psamophytes
(A) Standing crop (B) Standing state (C) Dry weight (D) Biomass 37. In pond ecosystem pyramid of number is always (A) Straight (B) Linear (A) Straight (B) Linear (D) Inverted 38. Vegetation dominated by shrubs with few tall trees is called (A) Scrule (B) Marsh (C) Grassland (D) Forest (D) Forest 39. Total energy produced during photosynthesis is called (A) Total biomass (B) Net biomass (C) Net primary production (D) Gross primary productor (D) Gross primary productor 40. Secondary producers of the ecosystem are (A) Green plants (B) Primary consumers (C) Top consumers (D) None of these 41. The chemical knives of DNA are (A) Ligases (B) Polymerases (C) Endonucleases (D) Transcriptases 42. (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Cowpea (B) Funiculus (C) Integument (D) Hilum (D) Hilum 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Integument (D) Hilum (D) Anemophily <t< td=""><td>36.</td><td>The ar</td><td>nount of living material in different trophic</td><td>levels</td><td>is called</td></t<>	36.	The ar	nount of living material in different trophic	levels	is called
(C) Dry weight (D) Biomass 37. In pond ecosystem pyramid of number is always (A) Straight (B) Linear (C) Upright (D) Inverted 38 Vegetation dominated by shrubs with few tall trees is called (A) Serule (B) Marsh (C) Grassland (D) Forest 39. Total energy produced during photosynthesis is called (A) Total biomass (B) Net biomass (C) Net primary production (D) Gross primary produce 40. Secondary producers of the ecosystem are (A) Green plants (B) Primary consumers (A) Green plants (D) None of these 11. The chemical knives of DNA are (A) Ligases (D) Transcriptases 12. (C) Endonucleases (D) Transcriptases (Z) The Indian variety of rice patented by an American company is (A) IA (A) IR 8 (B) Jaya (C) Brassica (D) Chilli 43. Pusa Komal is a variety of <td< td=""><td></td><td>(A)</td><td>Standing crop</td><td>(B)</td><td>Standing state</td></td<>		(A)	Standing crop	(B)	Standing state
 37. In pond ecosystem pyramid of number is always (A) Straight (B) Linear (C) Upright (D) Inverted 38. Vegetation dominated by shrubs with few tall trees is called (A) Serule (B) Marsh (C) Grassland (D) Forest 39. Total energy produced during photosynthesis is called (A) Total biomass (B) Net biomass (C) Net primary production (D) Gross primary produce 40. Secondary producers of the ecosystem are (A) Green plants (B) Primary consumers (C) Top consumers (D) None of these 41. The chemical knives of DNA are (C) Endonucleases (D) Transcriptases 42. The Indian variety of rice patented by an American company is (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Cowpea (B) Funiculus (C) Integument (D) Hilum 43. Pusa Komal is a variety of (A) Zoophily (B) Entomophily (C) Integument (D) Hilum 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily 46. An example of single cell protein is (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) 1986 (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert (A) 1986 (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert (A) 1986 (B) 1902 (C) Amazon rain forest (D) Sahara desert (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells		(C)	Dry weight	(D)	Biomass
(A) Straight (B) Linear (C) Upright (D) Inverted 38. Vegetation dominated by shrubs with few tall trees is called (A) Serule (B) (A) Serule (B) Marsh (C) Grassland (D) 39. Total energy produced during photosynthesis is called (A) Total biomass (B) Net biomass (C) Grassland (D) Forest 39 Total energy produced during photosynthesis is called (A) Total biomass (B) Net biomass (C) Gross primary produced 40. Secondary producers of the ecosystem are (A) Green plants (B) Primary consumers (C) Top consumers (D) None of these 41. 11. The chemical knives of DNA are (B) Polymerases (C) Top consumers (D) Transcriptases 42. The Indian variety of rice patented by an American company is (A) IA (A) IR 8 (B) Jaya (C) Sona masoori (D) Chastatatatatatatatatatatatatatatatatata	37.	In pon	d ecosystem pyramid of number is always	. /	
(C) Upright (D) Inverted 38. Vegetation dominated by shrubs with few tall trees is called (A) Serule (B) (A) Serule (B) Marsh (C) Grassland (D) Forest 39. Total energy produced during photosynthesis is called (A) Total biomass (B) Net biomass (C) Net primary production (D) Gross primary produce 40. Secondary producers of the ecosystem are (A) Green plants (B) Primary consumers (A) Green plants (B) Primary consumers (C) The chemical knives of DNA are (A) Ligases (D) Transcriptases (D) Transcriptases 41. The chemical knives of DNA are (C) Endonucleases (D) Transcriptases 42. The Indian variety of rice patented by an American company is (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati Basmati 43. Pusa Komal is a variety of (A) Cowpea (B) Vhiulin (C) <		(A)	Straight	(B)	Linear
 38. Vegetation dominated by shrubs with few tall trees is called (A) Serule (B) Marsh (C) Grassland (D) Forest 39. Total energy produced during photosynthesis is called (A) Total biomass (B) Net biomass (C) Net primary production (D) Gross primary product 40. Secondary producers of the ecosystem are (A) Green plants (B) Primary consumers (C) Top consumers (D) None of these 41. The chemical knives of DNA are (A) Ligases (B) Polymerases (C) Endonucleases (D) Transcriptases 42. The Indian variety of rice patented by an American company is (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Cowpea (B) Wheat (C) Brassica (D) Chilli 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily 46. An example of single cell protein is (A) I986 (B) 1902 (C) Amazon rain forest (D) Sahara desert 47. Which forest is named as the "Lungs of the planet"?? (A) 1986 (B) 1996 49. The earth summit held at Rio de Janeiro was in the year (A) Epidermal cells (C) Phloem cells (D) Xylem cells 		(C)	Upright	(D)	Inverted
(A) Serule (B) Marsh (C) Grassland (D) Forest 39. Total energy produced during photosynthesis is called (A) Total biomass (A) Total biomass (B) Net biomass (C) Net primary production (D) Gross primary productor 40. Secondary producers of the ecosystem are (A) Green plants (B) Primary consumers (A) Green plants (B) Polymerases (D) Transcriptases 41. The chemical knives of DNA are (A) Ligases (B) Polymerases (C) Endonucleases (D) Transcriptases 42. The Indian variety of rice patented by an American company is (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Cowpea (A) Pedicel (B) Funiculus (C) Integument (D) Chilli 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Integument (D) Hilum 45. Vallisneria usually favours (A) Zoophily (A) Spirulina (B) Volvox (C) Amazon rain forest (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? <t< td=""><td>38.</td><td>Veget</td><td>ation dominated by shrubs with few tall trees</td><td>s is cal</td><td>led</td></t<>	38.	Veget	ation dominated by shrubs with few tall trees	s is cal	led
(C) Grassland (D) Forest 39. Total energy produced during photosynthesis is called (A) Total biomass (B) Net biomass (A) Total biomass (B) Net biomass (C) Gross primary products 40. Secondary producers of the ecosystem are (A) Green plants (B) Primary consumers (A) Green plants (B) Polymerases (C) Top consumers (D) None of these 41. The chemical knives of DNA are (A) Ligases (B) Polymerases (C) Endonucleases (D) Transcriptases 10) Transcriptases 42. The Indian variety of rice patented by an American company is (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 11 14 The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Integument (D) Hilum 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) <		(A)	Serule	(B)	Marsh
 39. Total energy produced during photosynthesis is called (A) Total biomass (B) Net biomass (C) Net primary production (D) Gross primary produce 40. Secondary producers of the ecosystem are (A) Green plants (B) Primary consumers (C) Top consumers (D) None of these 41. The chemical knives of DNA are (A) Ligases (B) Polymerases (C) Endonucleases (D) Transcriptases 42. The Indian variety of rice patented by an American company is (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Cowpea (B) Wheat (C) Brassica (D) Chilli 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily (C) Hydrophily (D) Anemophily 45. Vallisneria usually favours (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"?? (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 		(C)	Grassland	(D)	Forest
(A) Total biomass (B) Net biomass (A) Total biomass (D) Gross primary product 40. Secondary producers of the ecosystem are (A) Green plants (B) Primary consumers (A) Green plants (B) Polymerases (D) None of these 41. The chemical knives of DNA are (A) Ligases (B) Polymerases (C) Endonucleases (D) Transcriptases 42. The Indian variety of rice patented by an American company is (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Cowpea (A) Cowpea (B) Wheat (C) Brassica (D) Chilli 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Integument (D) Hilum 45. Vallisneria usually favours (A) Zoophily (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"?? (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986	39.	Total	energy produced during photosynthesis is ca	lled	
(C) Net primary production (D) Gross primary product 40. Secondary producers of the ecosystem are (A) Green plants (B) Primary consumers (A) Green plants (B) Primary consumers (D) None of these 41. The chemical knives of DNA are (A) Ligases (B) Polymerases (A) Ligases (B) Polymerases (D) Transcriptases 42. The Indian variety of rice patented by an American company is (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Cowpea (B) Wheat (C) Brassica (D) Chilli 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Integument (D) Hilum 45. Valisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily (C) Hydrophily (D)		(A)	Total biomass	(B)	Net biomass
 40. Secondary producers of the ecosystem are (A) Green plants (B) Primary consumers (C) Top consumers (D) None of these 41. The chemical knives of DNA are (A) Ligases (B) Polymerases (C) Endonucleases (D) Transcriptases 42. The Indian variety of rice patented by an American company is (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Cowpea (B) Wheat (C) Brassica (D) Chilli 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Integument (D) Hilum 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily 46. An example of single cell protein is (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 		(C)	Net primary production	(D)	Gross primary production
(A) Green plants (B) Primary consumers (C) Top consumers (D) None of these 41. The chemical knives of DNA are (A) Ligases (D) (A) Ligases (D) Transcriptases (C) Endonucleases (D) Transcriptases 42. The Indian variety of rice patented by an American company is (A) (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Cowpea (B) (A) Cowpea (B) Wheat (C) (C) Brassica (D) Chilli 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funculus (C) Integument (D) Hilum Hilum 45. 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily (D) Chlamydomonas 46. An examp	40	Secon	dary producers of the ecosystem are	(-)	F F
 (C) Top consumers (D) None of these The chemical knives of DNA are (A) Ligases (B) Polymerases (C) Endonucleases (D) Transcriptases (E) Endonucleases (D) Basmati (E) Sona masoori (D) Basmati (E) Brassica (D) Chilli (E) Functulus (C) Integument (D) Chilli (E) Functulus (C) Integument (D) Anemophily (C) Hydrophily (D) Anemophily (C) Hydrophily (D) Chlamydomonas (E) Spirogyra (D) Chlamydomonas (E) Amazon rain forest (D) Sahara desert (E) Amazon rain forest (D) Sahara desert (E) Amazon rain forest (E) Eastern ghats (C) Amazon rain forest (D) Sahara desert (E) Endomuch at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 (E) Endomic ells (E) Cambial cells (C) Phloem cells (D) Xylem cells 		(A)	Green plants	(B)	Primary consumers
 41. The chemical knives of DNA are (A) Ligases (B) Polymerases (C) Endonucleases (D) Transcriptases 42. The Indian variety of rice patented by an American company is (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Cowpea (B) Wheat (C) Brassica (D) Chilli 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Integument (D) Hilum 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily 46. An example of single cell protein is (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 		(C)	Top consumers	(D)	None of these
(A) Ligases (B) Polymerases (C) Endonucleases (D) Transcriptases 42. The Indian variety of rice patented by an American company is (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Cowpea (B) Wheat (C) Brassica (D) Chilli Cowpea (B) Funiculus 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Integument (D) Hilum Hilum C) Hilum 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily (C) Hydrophily (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"?? (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert He A Remain theld at Rio de Janeiro was in the year (A)	41	The cl	nemical knives of DNA are	(-)	
 (C) Endonucleases (D) Transcriptases 42. The Indian variety of rice patented by an American company is (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Cowpea (B) Wheat (C) Brassica (D) Chilli 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Integument (D) Hilum 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily 46. An example of single cell protein is (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 		(A)	Ligases	(B)	Polymerases
 42. The Indian variety of rice patented by an American company is (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Cowpea (B) Wheat (C) Brassica (D) Chilli 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Integument (D) Hilum 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily 46. An example of single cell protein is (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 		(C)	Endonucleases	(D)	Transcriptases
 (A) IR 8 (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Cowpea (B) Wheat (C) Brassica (D) Chilli 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Integument (D) Hilum 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily 46. An example of single cell protein is (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 	42.	The In	dian variety of rice patented by an American	1 comr	anv is
 (A) IK o (B) Jaya (C) Sona masoori (D) Basmati 43. Pusa Komal is a variety of (A) Cowpea (B) Wheat (C) Brassica (D) Chilli 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Integument (D) Hilum 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily 46. An example of single cell protein is (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 		(Λ)	ID Q	(D)	Iovo
 43. Pusa Komal is a variety of (A) Cowpea (B) Wheat (C) Brassica (D) Chilli 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Integument (D) Hilum 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily 46. An example of single cell protein is (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 		(A)		(D)	Jaya
 43. Pusa Komal is a variety of (A) Cowpea (B) Wheat (C) Brassica (D) Chilli 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Integument (D) Hilum 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily 46. An example of single cell protein is (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 		(C)	Sona masoori	(D)	Basmati
(A) Cowpea(B) Wheat(C) Brassica(D) Chilli44.The stalk of the ovule that attaches it to the placenta in angiosperms is(A) Pedicel(B) Funiculus(C) Integument(D) Hilum45.Vallisneria usually favours(A) Zoophily(B) Entomophily(C) Hydrophily(D) Anemophily(C) Hydrophily(D) Anemophily46.An example of single cell protein is(A) Spirulina(B) Volvox(C) Spirogyra(D) Chlamydomonas47.Which forest is named as the "Lungs of the planet"?(A) Western ghats(B) Eastern ghats(C) Amazon rain forest(D) Sahara desert48.The earth summit held at Rio de Janeiro was in the year(A) 1986(B) 1902(C) 1992(D) 199649.Lignified cell wall occurs in(A) Epidermal cells(B) Cambial cells(C) Phloem cells(D) Xylem cells	43.	Pusa k	Komal is a variety of		
(C)Brassica(D)Chilli44.The stalk of the ovule that attaches it to the placenta in angiosperms is (A)Pedicel(B)Funiculus (C)(C)Integument(D)Hilum45.Vallisneria usually favours (A)Zoophily(B)Entomophily (D)(C)Hydrophily(D)Anemophily(C)Hydrophily(D)Anemophily46.An example of single cell protein is(B)Volvox (C)(C)Spirulina(B)Volvox (D)Chlamydomonas47.Which forest is named as the "Lungs of the planet"? (A)Western ghats (D)Sahara desert48.The earth summit held at Rio de Janeiro was in the year (A)(B)1902(C)1992(D)199649.Lignified cell wall occurs in (A)(B)Cambial cells (D)(A)Epidermal cells (C)(B)Cambial cells (D)		(A)	Cowpea	(B)	Wheat
 44. The stalk of the ovule that attaches it to the placenta in angiosperms is (A) Pedicel (B) Funiculus (C) Integument (D) Hilum 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily 46. An example of single cell protein is (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 		(C)	Brassica	(D)	Chilli
 (A) Pedicel (B) Funiculus (C) Integument (D) Hilum 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily 46. An example of single cell protein is (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (D) Xylem cells 	44.	The st	alk of the ovule that attaches it to the placent	ta in ai	ngiosperms is
(C)Integument(D)Hilum45.Vallisneria usually favours(A)Zoophily(B)Entomophily(C)Hydrophily(D)Anemophily46.An example of single cell protein is(A)Spirulina(B)Volvox(C)Spirogyra(D)Chlamydomonas47.Which forest is named as the "Lungs of the planet"?(A)Western ghats(B)(A)Western ghats(B)Eastern ghats(C)Amazon rain forest(D)Sahara desert48.The earth summit held at Rio de Janeiro was in the year (A)(B)1902(C)1992(D)199649.Lignified cell wall occurs in (A)(B)Cambial cells (D)(A)Epidermal cells(B)Cambial cells (D)(D)Phloem cells(D)Xylem cells		(A)	Pedicel	(B)	Funiculus
 45. Vallisneria usually favours (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily 46. An example of single cell protein is (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 		(C)	Integument	(D)	Hilum
 (A) Zoophily (B) Entomophily (C) Hydrophily (D) Anemophily 46. An example of single cell protein is (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (D) Xylem cells 	45.	Vallis	neria usually favours		
(C)Hydrophily(D)Anemophily46.An example of single cell protein is(D)Anemophily(A)Spirulina(B)Volvox(C)Spirogyra(D)Chlamydomonas47.Which forest is named as the "Lungs of the planet"?(A)Western ghats(B)(A)Western ghats(B)Eastern ghats(C)Amazon rain forest(D)Sahara desert48.The earth summit held at Rio de Janeiro was in the year(A)1986(A)1986(B)1902(C)1992(D)199649.Lignified cell wall occurs in (A)(B)Cambial cells (D)(A)Epidermal cells(B)Cambial cells(C)Phloem cells(D)Xylem cells		(A)	Zoophily	(B)	Entomophily
 46. An example of single cell protein is (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 		(C)	Hydrophily	(D)	Anemophily
 (A) Spirulina (B) Volvox (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (C) Phloem cells (D) Xylem cells 	46.	An ex	ample of single cell protein is		
 (f) Spiramina (D) Forton (C) Spirogyra (D) Chlamydomonas 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 		(A)	Spirulina	(B)	Volvox
 47. Which forest is named as the "Lungs of the planet"? (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 		(\mathbf{C})	Spirogyra	(D)	Chlamydomonas
 (A) Western ghats (B) Eastern ghats (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 	47	Which	forest is named as the "Lungs of the planet"	າ) ທີ	emainyaomonas
 (A) Westerin glatts (B) Easterin glatts (C) Amazon rain forest (D) Sahara desert 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 	17.	(A)	Western ghats	(B)	Fastern ohats
 48. The earth summit held at Rio de Janeiro was in the year (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 		$(\mathbf{\Gamma})$	Amazon rain forest	(\mathbf{D})	Sahara desert
 (A) 1986 (B) 1902 (C) 1992 (D) 1996 49. Lignified cell wall occurs in (A) Epidermal cells (B) Cambial cells (C) Phloem cells (D) Xylem cells 	18	The e	arth summit held at Rio de Janeiro was in the	(D)	Sanara desert
(A)1960(B)1962(C)1992(D)199649.Lignified cell wall occurs in (A)Epidermal cells(B)Cambial cells(C)Phloem cells(D)Xylem cells	40.	(Δ)		(\mathbf{R})	1902
(C)1992(D)199649.Lignified cell wall occurs in (A)Epidermal cells(B)Cambial cells(C)Phloem cells(D)Xylem cells		(A)	1980	(D)	1902
49.Lignified cell wall occurs in (A) Epidermal cells(B) Cambial cells (D) Xylem cells(C) Phloem cells(D) Xylem cells	40	(C)	1992	(D)	1996
(A)Epidermal cells(B)Cambial cells(C)Phloem cells(D)Xylem cells	49.	Lignif	ied cell wall occurs in		
(C) Phloem cells (D) Xylem cells		(A)	Epidermal cells	(B)	Cambial cells
		(C)	Phloem cells	(D)	Xylem cells

50.	A slide of TS dicot stem shows		
	(A) Scattered vascular bundles	(B)	Vascular bundles arranged in a ring
	(C) Radial vascular bundles	(D)	Closed vascular bundles
51.	Once formed, red blood cells normally have an ave	erage l	ife span of
	(A) 30 days	(B)	60 days
	(C) 90 days	(D)	120 days
52.	Heparin, an anticoagulant is manufactured by		
	(A) Plasma cells	(B)	Mast cells
	(C) Lymphocytes	(D)	Blood platelets
53.	Function of long bones in mammals is to		
	(A) Provide support only	(B)	Provide support and production of
			RBC only
	(C) Provide support and production of WBC	(D)	Provide support and production of
	only		RBC and WBC
54.	Binocular vision is seen in		
	(A) Man	(B)	Rabbit
	(C) Rat	(D)	Guinea pig
55.	Spermatogenesis is influenced by		
	(A) Testosterone	(B)	Luteinizing hormone
	(C) FSH	(D)	All of these
56.	The type of respiration found in man is		
	(A) Cutaneous	(B)	Subcutaneous
	(C) Pulmonary	(D)	Diffusion
57.	What happens if RBCs are put in a hypertonic solu	ition	
	(A) They will contract and loose water	(B)	They will swell up and burst
-0	(C) They will show clumping	(D)	None of these
58.	In man, urea is formed in the		
	(A) Body tissues	(B)	Kidney
50	(C) Liver	(D)	Spleen
59.	Which of the following stood erect first	(D)	D 1 '
	(A) Java man	(B)	Peking man
(0	(C) Australopitnecus	(D)	Cro-Magnon man
60.	A) Virging on the earth were	(D)	Destaria
	(A) Viruses	(B)	Bacteria
61	(C) Green algae The 'Use and disuse' principle of evolution was pr	(D)	Blue green algae
01.	(A) Lamaral		Waiaman
	(A) Lamaick (C) Huga da Vrias	(D)	Charles Derwin
62	(C) Hugo de viles The following is an example of inhorn error in met	(D) tabolis	Charles Dai will
02.	The following is an example of moon error in met (Λ) Spine bifide	(D)	Dhanylkatonuria
	(A) Spina Unida (C) Photometia	(\mathbf{D})	Mongolism
63	(C) Flocomena Identical twins develop from	(D)	Mongonsm
05.	(\mathbf{A}) One ovum and two sperms	(\mathbf{R})	Two ova and one sperm
	(C) Two ova and two sperms	(\mathbf{D})	None of these
64	The chromosomes are best studied at the following	(D) T stage	of mitosis
04.	(A) Prophase	(R)	Metanhase
	(\mathbf{C}) Anaphase	(\mathbf{D})	Telophase
65	A monosomic individual can be mathematically re	nresen	ted as
05.	(A) $2n-2$	(R)	2n+1
	(C) 2n-1	(D)	2n-4
		(1)	<u></u> 11 1

66.	In a fruit fly, a white eyed XXY female is mated to a red eyed XY male. The female progeny would be		
	(A) All red eved	(B)	All white eved
	(C) Mainly red eved with a few white eved	(D)	Mainly white eved with a few red eved
67	One of the following is a sex linked trait in hum:	ans	
07.	(A) Curly hairs	(B)	Sickle cell anemia
	(C) Colour blindness	(D)	Down's syndrome
68	First experimental evidence for triplet code was	given by	,
00.	(A) Nirenberg	(B)	H G Khorana
	(C) Watson	(D)	F.H.C. Crick
69	Protein coat virus is known as		
07.	(A) Capsid	(B)	Capsomere
	(C) Virion	(D)	Viroid
70.	Chemically a gene is		
	(A) Nucleoprotein	(B)	Polypeptide
	(C) Ribonucleic acid	(D)	Polynucleotide
71.	Apes differ from man in having		
	(Å) Arms shorter than legs	(B)	Legs shorter than arms
	(C) Length of arms and legs is similar	(D)	A tail
72.	The disease transmitted through sexual contact is	S	
	(A) Measles	(B)	Syphilis
	(C) Polio	(D)	Small pox
73.	Hypersensitivity of tissue occurs in		
	(A) Cancer	(B)	Malaria
	(C) Allergy	(D)	Small pox
74.	The sporozoites of malarial parasites are stored i	in	
	(A) Liver of man	(B)	Blood of man
	(C) Stomach of females anopheles	(D)	Salivary glands of female anopheles
75.	The following plant has male and female reprodu	uctive pa	arts in the same flower
	(A) Papaya	(B)	Datepalm
	(C) Cycas	(D)	Datura
76.	Optum is derived from		
	(A) Latex of <i>Papaver somniferum</i>	(B)	Seeds of Papaver somniferum
	(C) Seeds of Cojjee arabica	(D)	Leaves of datura
//.	Penicillium was first isolated from	(D)	Denieilling change a survey
	(A) Penicillium nigricans (C) Panicillium notatum	(D)	Penicillum chrysogenum Penicillum griseofulwum
70	(C) Tenicilium notatum Which of the following is an implant?	(D)	1 enicilium griseojuivum
/8.	(A) Blood dialyzer	(\mathbf{R})	Heart value
	(C) Artificial limbs	(D)	Oxygenator
70	Chemical nature of jute fibre is	(D)	Oxygenator
19.	(Λ) Lignin	(B)	Cellulose
	(\mathbf{C}) Pectin	(D)	Suberin
80	The conversion of molecular nitrogen to ammon	ia is kno	wn as
00.	(A) Nitrification	(B)	Denitrification
	(C) Ammonification	(D)	Nitrogen fixation
81	Cocaine is a powerful stimulant of	(2)	
01.	(A) Heart beat	(B)	Central nervous system
	(C) Muscles	(D)	Breathing
	5 P C B	A	

82.	Diagnosis of typhoid is done by		
	(A) ESR	(B)	ELISA test
	(C) DLC	(D)	WIDAL test
83.	Scientific study of human population is called		
	(A) Demography	(B)	Geography
	(C) Anthropology	(D)	Biogeography
84.	Vinegar is obtained due to biological activity of		
	(A) Acetobactor	(B)	Lactobacillus
	(C) Nostoc	(D)	Anabaena
85.	The following disease involves change in chromoso	ome ni	umber
	(A) Colour blindness	(B)	Haemophilia
	(C) Down's syndrome	(D)	Jaundice
86.	Ringworm disease is caused by		
	(A) Annelid	(B)	Helminthes
	(C) A fungus	Ď	A bacterium
87.	The open type of circulatory system is found in	()	
	(A) Nereis	(B)	Octopus
	(C) Prawn	(D)	Frog
88.	The process of translation is	()	-0
	(A) Ribosome synthesis	(B)	Protein synthesis
	(C) DNA synthesis	Ď	RNA synthesis
89	Dengue is transmitted by	(-)	
07.	(A) Culex	(B)	Male anopheles
	(C) Aedes	(D)	Female anopheles
90	Young of cockroach is called	(2)	
<i>y</i> 0.	(A) Ephyra	(B)	Nymph
	(C) Maggot	(D)	Iuvenile
91	Number of mitotic divisions required to produce 12	8 cell	s from a single cell is
<i>,</i>	(A) 7	(B)	14
	(C) = 16	(D)	32
92	Distance between two adjacent nitrogen bases of D	NA is	
<i>,</i> _ .	(A) 2.4 A°	(B)	$34 A^{\circ}$
	$(C) 24 A^{\circ}$	(D)	$34 A^{\circ}$
93	In addition to the nucleus DNA also occurs in	(D)	5111
20.	(A) Mitochondria	(B)	Lysosome
	(C) Ribosome	(D)	Golgi appratus
94	First photosynthetic organisms to develop on earth	were	Solgi upplatas
<i>y</i>	(A) Bacteria	(B)	Diatoms
	(C) Cyanobacteria	(D)	Green algae
95	The vector for causing sleening sickness in man is	(D)	Green uigue
<i>))</i> .	(A) House fly	(\mathbf{R})	Tse-Tse fly
	(C) Butterfly	(D)	Mosquito
96	Chromosomes are stained with	(D)	Mosquito
<i>J</i> 0.	(A) Saffranine	(\mathbf{R})	Acetocarmine
	(\mathbf{C}) Sciff's regent	(\mathbf{D})	Ethanol
97	The universal recipient blood group is	(D)	L'inditor
)1.	$(\Lambda) \qquad \Lambda$	(\mathbf{R})	٨B
	$\begin{pmatrix} A \mathbf{y} \\ C \end{pmatrix} = \begin{pmatrix} A \mathbf{y} \\ C \end{pmatrix}$	(D)	R
98	Arsenic pollutant in drinking water causes	(D)	D
<i>J</i> 0.	(A) Liver and lung diseases	(\mathbf{R})	Paralysis
	(C) Kidney diseases	(D)	1 alalysis Cancer
	(C) Klulley diseases	(D)	Cancer

99.	In the colony of <i>Apis indica</i> , the one formed b (A) Queen	by parthenogenesis is (B) Worker
	(C) Drone	(D) Both B and C
100.	The pollutant responsible for chromosomal m	utations in man is
	(A) Lead	(B) Manganese
	(C) Arsenic	(D) Mercury
101.	While walking on smooth surface one should	take small steps to ensure
	(A) Large friction	(B) Small friction
100	(C) Larger normal force	(D) Smaller normal force
102.	What happens to a vehicle travelling in an unit	banked curved path if the friction between the road
	(A) Moves along tangent	(D) Moves radially in
	(A) Moves radially out	(D) Moves along the curve
103	(C) Moves faularly out A ball of mass 0.2 kg strikes an obstacle and t	(D) Moves along the curve
105.	changes from 20 m/s to 10 m/s the magnitude of	of impulse received by the ball isNs
	$(A) = 2\sqrt{7}$	(B) $2\sqrt{2}$
	$(\Gamma) = 2\sqrt{7}$	$\begin{array}{c} (D) & 2\sqrt{3} \\ (D) & 2\sqrt{2} \end{array}$
104	$(C) 2\sqrt{5}$	(D) $3\sqrt{2}$
104.	A spacecraft of mass 2000 kg moving with 60	00 m/s suddenly explodes into two pieces. One piece
	of mass 500 kg is stationary. The velocity of (A)	other part in m/s is $(\mathbf{p}) = 800$
	(A) 000 (C) 1500	(b) 800 (b) 1000
105	(C) 1500	(D) 1000
105.	16 kg 140 N	The force on 16 kg is
	- + Kg	
	(A) 140N	(B) $120N$
	(C) 100N	$\begin{array}{c} (D) & 12010 \\ (D) & 80N \end{array}$
106	A man of mass 40 kg is at rest between the wa	alls If coeff of friction between man and wall is
100.	0.8 find the normal reaction exerted by wall of	on man (take $g = 10 \text{ m/s/s}$)
	\bigcirc	
	пҮп	
	(A) 100 N	(B) 250 N
	(C) 80 N	(D) 50 N
107.		
	h	
		>
	Find minimum height in terms of D to comple	ete the loop
	(A) 7D/4	(B) 9D/4
	(C) 5D/4	(D) 3D/4
108.	Gravitational force between two bodies is F. T	The space around the mass is now filled with a
	liquid of specific gravity 3. The gravitational $\frac{1}{2}$	force will be
	(A) F/9	(B) 3F
	(C) F	(D) F/3
	7 P C	B A

109.	A man weighs 75 kg on the surface of earth. Hi	is weight o	on the geostationary satellite is
	(A) infinity	(B)	150kg
	(C) zero	(D)	75/2 kg
110.	g at a depth of 1600 km inside the earth in m/s.	/s is	
	(A) 6.65	(B)	7.35
	(C) 8.65	(D)	4.35
111.	A block of mass 19 M is suspended by a string	of length	1m. A bullet of mass M hits it and gets
	embedded in it. If the block completes the vert	ical circle	the velocity of bullet in m/s is
	(A) 140	(B)	$20\sqrt{19.6}$
	(C) $20\sqrt{9.8}$	(D)	20
112.	A rubber ball falls from a height of 4m and reb	ounds to 1	.5m. The % loss of energy during the
	impact is		
	(A) 20	(B)	62.5
	(C) 23	(D)	60
113.	25 kg of sand is deposited each second on a con	nveyor bel	t moving at 10m/s. The extra power
	required to maintain the belt in motion is		
	(A) 2600W	(B)	250W
	(C) 325W	(D)	2500W
114.	A uniform rod of mass M and length L standing	g verticall	y on a horizontal floor falls without
	slipping at the bottom. The moment of inertia v	vill be	2
	$(A) \qquad ML^{2}/3$	(B)	$ML^{2}/6$
	(C) $ML^2/9$	(D)	ML ² /12
115.	If the velocity of C.M of a rolling body is V, th	en velocit	y of highest point in the body will be
	$(A) \sqrt{2V}$	(B)	V N/ /2
116	$\begin{array}{c} (C) & 2V \\ T & 1 \\ \end{array}$	(D)	V/N2
116.	I he angular momentum of two rotating bodies	are equal.	If the ratio of their M.1 is 1:4, the ratio
	of their fotational K.E is $(A) = 1.2$	(D)	2.1
	(A) 1.2 (C) 1.4	(D)	2.1 4·1
117	(C) 1.4 The level of water in a tank is 5m Λ hole 1 cm	2 is made	at the bottom. The rate of leakage in m^3
11/.	s is (take $a = 10 m/s/s$)	15 maue	at the obtion. The fate of feakage in m
	$(\Delta) = 10^{-3}$	(\mathbf{R})	10 ⁻⁴
	$(\mathbf{R}) = 10$ $(\mathbf{C}) = 10$	(D)	10^{-2}
118	Two blocks A and B float in water A floats with	th $1/4^{\text{th}}$ of	its volume immersed and B floats with
110.	$3/5^{\text{th}}$ of its volume immersed. The ratio of their	densities	is
	(A) 5.12	(B)	12.5
	(C) 3.20	(D)	20.3
119	The terminal velocity of a spherical ball of lead	l of radius	R is V while falling through a viscous
	liquid varies with R such that		
	(A) V/R is constant	(B)	VR is constant
	(C) V is constant	(D)	V/R^2 is constant
120.	A hydraulic press uses a piston of 100 cm^2 to ex	kert a force	e of 10^7 dynes on water. The area of the
	other piston that supports a mass of 2000 kg is	(take g = 1)	10m/s/s)
	(A) 100 cm^2	(B)	10^9 cm^2
	(C) $2 \times 10^4 \text{ cm}^2$	(D)	$2 \times 10^{10} \text{ cm}^2$
121.	When kerosene and coconut oil of coeff. of vise	cosity 0.00	02 and 0.0154 Ns/m^2 are allowed
	through the same pipe, under same pressure dif	ference ar	nd same time collects 1 lit of coconut oil.
	The volume of kerosene that flows is		
	(A) 5.5 lit	(B)	6.6 lit
	(C) 7.7 lit	(D)	8.8 lit

122.	There is a circular hole in metal plate. When the pl(A) increased(C) unchanged	ate is heated the radius of the hole becomes(B) decreased(D) depends on metal
123.	Specific heat of a substance depends on 1. Nature of given to substance(A) Only one is correct(C) All are correct	 (B) Both 1 and 2 are correct (D) Only 1 and 3 are correct
124.	 In a give process dW=0, dq is <0 then for a gas (A) Temperature increases (C) Pressure increases 	(B) Volume decreases(D) Pressure decreases
125.	The efficiency of carnot engine depends on(A) Working substance(C) Source temperature	(B) Sink temperature(D) Both B and C
126.	A 200 turn coil of self inductance 30 mH carries a with each turn of coil. (A) 7.5×10^{-7} Wb (C) 3×10^{-7} Wb	current of 5 mA. Find the magnetic flux linked (B) 1.6×10^{-7} Wb (D) 1.5×10^{-7} Wb
127.	The instantaneous value of current in an AC circui time the current will be maximum? (A) 1/100 s (C) 1/500 s	t is I = 2 sin (100 π t + $\pi/3$) A. At what first (B) 1/200 s (D) 1 s
128.	What in electric system represents force in mechan (A) L (C) 1/C	ical system ? (B) I (D) q
129.	A capacitor of 1 μF is charged with 0.01C of electr (A) 30 J (C) 50 J	icity. How much energy is stored in it? (B) 40 J (D) 60 J
130.	An electromagnetic wave is travelling in vacuum v a medium having relative electric and magnetic per (A) $3/\sqrt{2} \times 10^8$ m/s (C) 2×10^8 m/s	 with a speed of 3 x 10⁸ m/s. Find the velocity in rmeability 2 and 1, respectively. (B) 1.5 x 10⁸ m/s (D) No change
131.	Trace the path of ray of light passing through a gla refractive index of glass is $\sqrt{3}$, find out the value of 60^{-60}	ss prism as shown in the figure. If the fangle of emergence from prism.
	(A) 30 (C) 60	(B) 45(D) 75
132.	Light wave from two coherent sources of intensitie the ratio of maxima and minima of the interference (A) 8:1 (C) 9:7	es in ratio 64:1 produces interference. Calculate pattern. (B) 64:1 (D) 81:49

133.	In young's experiment, the width of the fringes obtained with light of wavelength 6000 A° is 2 mm. What will be the fringe width, if the entire apparatus is immersed in a liquid of refractive index 1.33?			
	(A) 1 mm (C) 2 mm	(B) 1.5 mm(D) 2.5 mm		
134.	Unpolarised light is incident on plane glass surface degrees, so that the reflected and refracted rays are (A) 37 (C) 57	 ce. What should be the angle of incidence in e perpendicular to each other? (B) 47 (D) 67 		
135.	Determine the de-Broglie wavelength associated v difference of 100 V. (A) 1.227A° (C) 122.7A°	 (B) 12.27A° (D) 1227A° 		
136.	 A particle with rest mass m₀ is moving with veloc associated with it? (A) infinity (C) radio wave 	ity c. What is the de-Broglie wavelength(B) zero(D) X ray		
137.	Which among the following series gives visible lig(A) Lyman(C) Bracket	ght? (B) Balmer (D) None		
138.	Identify the logic operation performed by this circ A			
	(A) AND (C) NAND	(B) OR(D) NOR		
139.	The number of silicon atoms per m ³ is 5 x 10 ²⁸ . The per m ³ of arsenic and 5 x 10 ²⁰ atoms per m ³ of indian _i = 1.5 x 10 ¹⁶ m ⁻³ .	his is doped simultaneously with 5 x 10^{22} atoms ium. Calculate the number of holes, given that		
	(A) $4.54 \times 10^{9} \text{m}^{-3}$ (C) $1.5 \times 10^{16} \text{m}^{-3}$	(B) $4.95 \times 10^{22} \text{m}^{-3}$ (D) $5 \times 10^{28} \text{m}^{-3}$		
140.	Two charges $+5\mu C$ and $-5\mu C$ are placed 5 mm apa on the positive charge side along the axial line. (A) 4.5 x 10 ⁵ N/C (C) 4.5 x 10 ⁻⁵ N/C	art. Determine E at a point 10 cm from centre (B) 4.5×10^{5} NC (D) 4.5×10^{-5} NC		
141.	If the Gaussian surface is so chosen that there are electric field is due to (A) Only inside charges (C) All the charges	(B) Only outside charges(D) Cannot determine		

The following is a diagram showing the variation of E with r from centre of uniformly charge 142. spherical shell of radius R

An inductor of 5H carries a steady current of 2A. In what time if the current is made zero can a 144. 40V self induced emf be produced in the inductor. (A) 2

(A)	2s	(B)	IS
(C)	0.5s	(D)	0.25s

A cell of emf E and internal resistance r gives 0.5A with R=12 ohms and 0.25 with R = 25 ohms. 145. Its internal resistance in ohms will be

(A)	0.5	(B)	1
(C)	2	(D)	3

146.

Find current in the following circuit

147.	Two identical circular loops P and Q of radius r are placed in parallel planes with same axis distance of 2r. Find B at the midpoint of the axis between them if same current I flows throu			ed in parallel planes with same axis at a them if same current I flows through
	both l	oops.		2/2
	(\mathbf{A})	$\mu_0 I/2^{3/2} r$	(B)	$\mu_0 2I/2^{3/2}r$
	(C)	$\mu_0 I/4\pi r$	(D)	Cannot be determined
148.	A blo 0.8. If	ck of mass 4 kg is kept on a rough horizontal f a force of 19 N is applied on the block paral ten the block and floor is:	surfac lel to t	the coefficient of static friction is the floor, then the force of friction
	(A)	19N	(B)	18 N
	(C)	16N	(D)	9.8N
149.	Curre	nt in a circuit falls steadily from 2A to 0A in	10 ms	. Calculate L if emf induced is 200V.
	(A)	1H	(B)	2Н
	(C)	3H	(D)	4H
150.	Self in core.	nductance of the air core inductor increases fi What is the relative permeability of the core u	om 0.0 used?	01 mH to 10 mH on introducing an iron
	(A)	500	(B)	800
	(C)	900	(D)	1000
151.	Amor	ing the following, the most stable complex is $\frac{1}{2}$	(=)	577 (2 177 × 3 ³⁺
	(A)	$[Fe (H_2O)_6]^3$	(B)	$[Fe (NH_3)_6]^{3}$
	(C)	$[Fe(C_2O_4)_3]^{\circ}$	(D)	$[Fe (Cl)_6]^{\circ}$
152.	Which metal	h is the correct coordination number (C.N) an atom in $[Co(NH_3)_2(H_2O)_2Cl_2]^+$?	nd oxid	lation number (O.N) of the transition
	(A)	C.N=3, O.N=+1	(B)	C.N=4, O.N=+2
1.50	(C) Tu a a		(D)	
155.	In a so	B occupy one third of the octahedral voids	t occuj The fo	rmula of the solid is:
	(A)	ABO_2	(B)	A ₂ BO
	(C)	AB ₃ O	(D)	$A_3B_3O_3$
154.	On m	ixing acetone to methanol some of the hydrog	gen bo	nds between methanol molecules break.
	Whick	h of the following statements is correct about	the ab	hove process?
	(A)	At specific composition methanol acetone	(B)	At specific composition methanol
		azeotrope and show positive deviation		boiling azeotrope and show positive
		from Raoult's law		deviation from Raoult's law
	(C)	At specific composition methanol acetone	(D)	At specific composition methanol
		mixture will form minimum boiling		acetone mixture will form maximum
		azeotrope and show negative deviation		boiling azeotrope and show negative
		from Raoult's law		deviation from Raoult's law
155.	5. K _H value for argon, carbon dioxide, formaldehyde and methane gases are 40.39, 1.67, 1.83 X 10 and 0.413, respectively. The correct arrangement of these gases in the order of their increasing			
	(Λ)	iiiiy is: formaldahyda <mathana<carbon< td=""><td>(\mathbf{R})</td><td>formaldehyde< carbon dioxide</td></mathana<carbon<>	(\mathbf{R})	formaldehyde< carbon dioxide
	(A)	dioxide <argon< td=""><td>(D)</td><td><methane<argon< td=""></methane<argon<></td></argon<>	(D)	<methane<argon< td=""></methane<argon<>
	(C)	argon <carbon dioxide<<br="">methane<formaldehyde< td=""><td>(D)</td><td>argon <methane <carbon="" dioxide<br=""><formaldehyde< td=""></formaldehyde<></methane></td></formaldehyde<></carbon>	(D)	argon <methane <carbon="" dioxide<br=""><formaldehyde< td=""></formaldehyde<></methane>
156.	The n	umber of faradays of electricity required for	electro	lytic conversion of the mole of
	nıtrob	enzene to aniline is:		45
	(A) (C)	אר 6F	(D) (B)	4r 5e
	(\mathbf{U})	UI	(D)	JI

157.	 The positive value of the standard electrode potential of (A) This redox couple is a stronger reducing (E) agent than H⁺/H₂ couple (C) Ag can displace H₂ from acid (E) 	 of Ag⁺/Ag indicates that: This redox couple is a stronger oxidizing agent than H⁺/H₂ couple Ag can displace H₂ from base 			
158.	Milk is refrigerated in order to slow the rate of decompreaction rate is due to: (A) A decrease in surface area (E	position by bacterial action. The decrease in B) A decrease in \triangle H for the reaction			
	(C) A decrease in the fraction of particles (L possessing sufficient energy	D) The introduction of an alternative pathway with greater activation energy.			
159.	 Which of the following statements is not correct? (A) The rate of a reaction decreases with passage of time as concentration of reactants decrease 	3) The instantaneous rate a reaction is same at any time during the reaction			
	(C) For a zero order reaction the (C) concentration of reactants remains changed with passage of time	D) The rate of a reaction decreases with increase in concentration of reactant (s)			
160.	Which of the following gases shows the lowest adsorp temperatures are given in parenthesis:	tion per gram of charcoal? The critical			
	$ \begin{array}{ccc} (A) & H_2 (33K) & (E) \\ (C) & SO_2 (630K) & (E) \end{array} $	 CH₄(190K) CO₂(304K) 			
161.	 Freundlich adsorption isotherm is given by the expression x/m=kp^{1/n}. Which of the following statements are false? i. When 1/n=0, the adsorption is independent of pressure. ii. When n=0, the plot of x/m vs p graph is a line parallel to x axis. iii. When 1/n=0, the adsorption is directly proportional to pressure. 				
	(A) i and ii (C) i and iii (E	ii and ivall are false			
162.	In the extraction of chlorine by electrolysis of an aque the following statements are true? i. $\triangle G^0$ for the overall reaction is positive ii. $\triangle G^0$ for the overall reaction is negative iii. E^0 for the overall reaction is positive iv. E^0 for the overall reaction is negative	ous solution of sodium chloride, which of			
	(A)i and iv(E(C)ii and iii(E	and iiiiii and iv			
163.	Which of the following pairs of ions are isoelectronic(A) NO_2^+ and NO_3^- (E)(C) $XeO_3^{2^-}$ and PCl_3 (E)	and isostructural ? B) ClO_3^- and ICl_4^- D) ClO_3^- and SO_3^{2-}			
164.	Which of the following hydrides is the strongest reduct (A) NH_3 (E) (C) AsH_3 (E)	ing agent? B) PH ₃ D) SbH ₃			

165.	Consider the reactions, i. $Zn + Conc. HNO_3 (hot) \longrightarrow Zn (NO_3)_2 + X + H_2O$ ii. $Zn + dil. HNO_3 (cold) \longrightarrow Zn (NO_3)_2 + Y + H_2O$ Compounds X and Y are, respectively				
	(A) (C)	N ₂ O, NO N ₂ , N ₂ O	(B) (D)	NO ₂ , NO ₂ NO ₂ , NO	
166.	When mang	KMnO ₄ acts as an oxidizing agent in weakly anese decreases by:	v alkal	ine medium, the oxidation number of	
	(A) (C)	1 3	(B) (D)	2 5	
167.	Acidi forma	fied potassium dichromate solution turns gree tion of:	en whe	en Na_2SO_3 is added to it due to the	
	(A) (C)	CrSO ₄ CrO ₄ ²⁻	(B) (D)	$Cr_2(SO_4)_3 Cr_2(SO_3)_3$	
168.	The d Whick numb	-electron configurations of Cr^{2+} , Mn^{2+} , $Fe^{2+}a$ h one of the following complexes will exhibit ers of Cr=24, Mn=25, Fe=26, Co=27)	nd Co	$^{2+}$ are d ⁴ , d ⁵ , d ⁶ and d ⁷ , respectively. num paramagnetic behavior? (atomic	
	(A) (C)	$[Cr(H_2O)_6]^{2^+}$ $[Fe(H_2O)_6]^{2^+}$	(B) (D)	$\frac{[Mn(H_2O)_6]^{2^+}}{[Co(H_2O)_6]^{2^+}}$	
169.	When is:	2-Bromopentane is heated with potassium et	thoxid	e in ethanol, the major product obtained	
	(A) (C)	2-Ethoxypentane Cis-Pent-2-ene	(B) (D)	Pent-1-ene Trans-Pent-2-ene	
170.	Whick (A) (C)	h of the following undergoes nucleophilic sub Chloroethane Chlorobenzene	ostituti (B) (D)	ion exclusively by S _N ¹ mechnism? Isopropyl chloride Benzyl chloride	
171.	The n (A) (C)	umber of possible stereoisomers for CH ₃ CH= 8 4	=CHC (B) (D)	H ₂ CH(Br)CH ₃ is: 2 6	
172.	2-Met	thoxy-2-methylpropane on heating with HI pr	oduce	s: Mathyliadida and tart butyl alaabal	
	(\mathbf{R}) (\mathbf{C})	Methyl iodide and isobutene	(D)	Methanol and tet-butyl iodide	
173.	The le (A) (C)	east acidic compound among the following is o-Nitrophenol p-Nitrophenol	: (B) (D)	m-Nitrophenol Phenol	
174.	An al The k	kene C_7H_{14} on reductive ozonolysis gives an atom is:	aldehy	vde with formula C ₃ H ₆ O and a ketone.	
	(A) (C)	2-Butanone 3-Pentanone	(B) (D)	2-Pentanone Propanone	
175.	The in Aceto	ncreasing order of the rate of addition of HCN one iii) Acetophenone iv) benzophenone	I to th	e compounds i) Formaldehyde ii)	
	(A) (C)	i <ii <="" iii<="" iv<br="">iv≤iii≤ ii≤ i</ii>	(B) (D)	iv< ii< iii < i iv< i< ii< iii	

176.	The ca (A)	arboxylic acid that does not undergo He CH ₃ COOH	ell-Vohlard- (B)	Zelinsky reaction is: (CH ₃) ₂ CHCOOH
	(C)	CH ₃ CH ₂ CH ₂ COOH	(D)	(CH ₃) ₃ CCOOH
177.	C ₂ H ₅ N	$NH_2 \xrightarrow{NaNO_2/HCl} X \xrightarrow{P/Br_2} Y \xrightarrow{N} (ex)$	$H_3 \longrightarrow Z$	
	In the (A) (C)	above sequence, Z is: cyanoethane methanamine	(B) (D)	ethanamide ethanamine
178.	The at	ttachment of which of the following gro	oup at para r	position in aniline will raise the K_{h}
	value (A) (C)	? -SO ₃ H -F	(B) (D)	–OH –Br
179.	Which	n of the following is an example of glob	oular protein	1?
	(A) (C)	myosin keratin	(B) (D)	collagen haemoglobin
180.	Which	n one of the following is synthesized in	our body by	y sun rays?
	(A) (C)	Vitamin D Vitamin K	(B) (D)	Vitamin B Vitamin A
181.	Capro	lactum is the is the starting material for	the synthes	sis of
	(A) (C)	Terylene	(B) (D)	Nylon 10
182.	The sp	pecies which can serve as an initiator for	or cationic p	olymerization is
	(A) (C)	Lithium aluminium hydride Aluminium chloride	(B) (D)	Nitric acid BuLi
183.	Aspiri	in is an:	(7)	
	(A) (C)	analgesic antimalarial	(B) (D)	antipyretic Both analgesic and antipyretic
184.	The e	quivalent mass of iron in the reaction 2	$Fe + 3Cl_2 - (P)$	→ 2FeCl ₃ is:
	(A) (C)	Same as atomic mass	(B) (D)	One fourth of its atomic mass
185.	Which	n of the following sets of quantum num	bers is corre	ect for an electron in 4f subshell?
	(A) (C)	n=4, l=3, m=4, s=+1/2 n=4, l=3, m=+1, s=+1/2	(B) (D)	n=4, l=3, m=-4, s=-1/2 n=3, l=2, m=-2, s=+1/2
186.	The co	orrect sequence of atomic radii is:		
	(A) (C)	Na>Mg>Al>Si Si>Al>Mg>Na	(B) (D)	Al>Si>Al>Na>Mg Si>Al>Na>Mg
187.	In wh	ich of the following, the bond angle arc	ound the cen	tral atom is maximum?
	(A) (C)	NH ₃ PCl ₃	(B) (D)	NH4 ⁺ SCl ₂
188.	Which	n of the following molecule does not ex	ist	
	(A) (C)	NF ₃ PF ₅	(B) (D)	NF5 N2H4
	(-)	J		24

189.	If heli	um is allowed to expand in vacuum, it liberat	es hea	It is an ideal gas
	(\mathbf{C})	Its critical temp. is low	(D) (D)	It is a light gas
190.	i) H ₂ (g reaction	g) + 1/2O ₂ (g) \rightarrow H ₂ O(I)+ x KJ ii) H ₂ (g) + ons,	1/2O ₂	$(g) \rightarrow H_2O(g) + y KJ$; For the given two
	(A) (C)	x>y x=y	(B) (D)	x <y x+y=0</y
191.	If the respec (A) (C)	bond dissociation energies of XY, X_2 , Y_2 (all ctively and $\Delta_f H$ of XY is -200KJmol ⁻¹ , the box 400 KJmol ⁻¹ 200 KJmol ⁻¹	diator nd diss (B) (D)	mic molecules) are in the ratio 1:1:0.5, sociation energy of X_2 will be: 300 KJmol ⁻¹ 100 KJmol ⁻¹
192.	What among (A) (C)	will be the correct order of vapour pressure o g these compounds water has maximum boili Water <ether<ethanol Ether<ethanol<water< td=""><td>f wate ng poi (B) (D)</td><td>er, ethanol and ether at 30^oC? Given that nt and ether has minimum boiling point. Water<ethanol<ether Ethanol<ether<water< td=""></ether<water<></ethanol<ether </td></ethanol<water<></ether<ethanol 	f wate ng poi (B) (D)	er, ethanol and ether at 30 ^o C? Given that nt and ether has minimum boiling point. Water <ethanol<ether Ethanol<ether<water< td=""></ether<water<></ethanol<ether
193.	Which consta	n of the following will occur if a 0.1M solution ant temperature?	on of a	weak acid is diluted to 0.01M at
	(A) (C)	Percentage ionization will increase	(D)	K_a will increase
194.	Which (A) (C)	n of the following species involves the transfer $MnO_4^{2^-} \rightarrow MnO_4^{-1}$ $MnO_4^{-1} \rightarrow MnO_2$	er of 5 (B) (D)	N _A electrons per mole of it ? MnO ₄ ⁻ → Mn ²⁺ CrO ₄ ²⁻ →Cr ³⁺
195.	30-vo (A)	lume hyderogen peroxide means: 30% H ₂ O ₂ by volume	(B)	30g of H ₂ O ₂ solution containing 1g of it
	(C)	1 cm ³ of solution liberates 30 cm ³ of O_2 gas at STP	(D)	30 cm^3 of the solution contains one mole of H_2O_2
196.	The co (A) (C)	orrect sequence of covalent character is repre LiCl <nacl<becl<sub>2 NaCl<licl< becl<sub="">2</licl<></nacl<becl<sub>	sented (B) (D)	l by: BeCl ₂ <licl<nacl BeCl₂<nacl< licl<="" td=""></nacl<></licl<nacl
197.	Which (A) (C)	h of the following is known as pyrene? CCl_4 S_2Cl_2	(B) (D)	CS ₂ Solid CO ₂
198.	The m (A) (C)	nost stable carbocation amongst the following (CH ₃) ₂ CH ⁺ CH ₃ CH ²⁺	(B) (D)	Ph_3C^+ $CH_2=CH-CH_2^+$
199.	The m (A) (C)	nolecule that will have dipole moment is: 2,2-Dimethylpropane trans-2-Butene	(B) (D)	cis-2-Butene 2,2,3,3-Tetramethylbutane
200.	Of the (A) (C)	e five isomeric hexanes, the isomer which can 2-Methylpentane 2,3-Dimethylbutane	(B) (D)	two monochlorinated compound is: 2,2-Dimethylbutane n-Hexane

Sr.	Question		
No.			
1.	Once formed, red blood cells normally have an av $(A) = 20$ days	verage l	ife span of
	$\begin{array}{ccc} (A) & 30 \text{ days} \\ (C) & 90 \text{ days} \end{array}$	(B)	60 days
2		(D)	120 uays
2.	Heparin, an anticoagulant is manufactured by	(D)	Mast calls
	(A) Flashia cells (C) Lymphocytes	(D)	Blood platelets
2	Eurotion of long honos in mammala is to	(D)	blood placets
3.	(A) Provide support only	(B)	Provide support and production of
		(D)	RBC only
	(C) Provide support and production of WBC	(D)	Provide support and production of
	only		RBC and WBC
4.	Binocular vision is seen in $(A) = M_{\text{eff}}$	(D)	D-11:4
	(A) Man (C) Pat	(B)	Kabbit Guinea nig
5	(C) Nat	(D)	Sumea pig
Э.	Spermatogenesis is influenced by		T / * * * T
	(A) lestosterone (C) ESH	(B)	Luteinizing hormone
C		(D)	All of these
6.	I ne type of respiration found in man is		Seeh and an a see
	(A) Cutaneous (C) Pulmonary	(B)	Subcutaneous Diffusion
7	(C) Pullionary	(D)	Diffusion
1.	(A) They will contract and loose water	ution (P)	They will swell up and burst
	(A) They will contract and loose water (C) They will show clumping	(D)	None of these
0	In man urap is formed in the	(D)	Tone of these
0.	(A) Body tissues	(R)	Kidney
	(C) Liver	(D)	Spleen
9	Which of the following stood erect first	(2)	- r
۶.	(A) Java man	(B)	Peking man
	C Australopithecus	(D)	Cro-Magnon man
10.	The first autotrophs on the earth were		-
	(A) Viruses	(B)	Bacteria
	(C) Green algae	(D)	Blue green algae
11.	The 'Use and disuse' principle of evolution was p	ropose	d by
	(A) Lamarck	(B)	Weisman
	(C) Hugo de Vries	(D)	Charles Darwin
12.	The following is an example of inborn error in me	etabolis	m
	(A) Spina bifida	(B)	Phenylketonuria
	(C) Phocomelia	(D)	Mongolism
13.	Identical twins develop from		
	(A) One ovum and two sperms	(B)	Two ova and one sperm
	(C) Two ova and two sperms	(D)	None of these
14.	The chromosomes are best studied at the followin	ig stage	of mitosis
	(A) Prophase	(B)	Metaphase
	(C) Anapnase	(D)	reiopnase

15. A monosomic individual can be mathematically represented as			ted as	
	(A)	2n-2	(B)	2n+1
	(C)	2n-1	(D)	2n-4
16.	In a fr	ruit fly, a white eyed XXY female is mated to	a red	eyed XY male. The female progeny
	would	l be		
	(A)	All red eyed	(B)	All white eyed
	(C)	Mainly red eyed with a few white eyed	(D)	Mainly white eyed with a few red eyed
17.	One o	of the following is a sex linked trait in humans	5	
	(A)	Curly hairs	(B)	Sickle cell anemia
	(C)	Colour blindness	(D)	Down's syndrome
18.	First e	experimental evidence for triplet code was give	en by	
	(A)	Nirenberg	(B)	H.G. Khorana
	(C)	Watson	(D)	F.H.C. Crick
19.	Protei	n coat virus is known as		
	(A)	Capsid	(B)	Capsomere
	(C)	Virion	(D)	Viroid
20.	Chem	ically a gene is		
	(A)	Nucleoprotein	(B)	Polypeptide
	(C)	Ribonucleic acid	(D)	Polynucleotide
21.	Apes	differ from man in having		
	(A)	Arms shorter than legs	(B)	Legs shorter than arms
	(C)	Length of arms and legs is similar	(D)	A tail
22.	The d	isease transmitted through sexual contact is	(T)	~
	(A)	Measles	(B)	Syphilis
••	(C)	Polio	(D)	Small pox
23.	Hyper	rsensitivity of tissue occurs in		
	(A)	Cancer	(B)	Malaria
2.4	(C)	Allergy	(D)	Small pox
24.	I he s	porozoites of malarial parasites are stored in	(D)	Dischaftman
	(A)	Liver of man	(B)	Blood of man
25	(C) The f	Stomach of females anopheles	(D)	Salivary glands of female anopheles
25.	(Λ)	Dirowing plant has male and remaie reproduct	(\mathbf{D})	Detensime nower
	(A)	Papaya	(D)	Datepain
26	(C)	Cycas n is derived from	(D)	Datula
20.	(Λ)	I stev of Panavar somnifarum	(\mathbf{B})	Seeds of Panavar somniforum
	(\mathbf{A})	Seeds of Coffee arabica	(\mathbf{D})	Leaves of datura
27	(C) Ponic	illium was first isolated from	(D)	
21.	(A)	Penicillium nigricans	(B)	Penicillium chrysogenum
	(\mathbf{C})	Penicillium notatum	(D)	Penicillum griseofulvum
28	Whiel	h of the following is an implant?	(D)	1 ententian griscojatvan
20.	(A)	Blood diasyser	(B)	Heart valve
	(\mathbf{C})	Artificial limbs	(D)	Oxygenator
29	Chem	ical nature of jute fibre is	(2)	Shygenator
_/.	(A)	Lignin	(B)	Cellulose
	(C)	Pectin	(D)	Suberin
30.	The c	onversion of molecular nitrogen to ammonia	is kno	wn as
	(A)	Nitrification	(B)	Denitrification
	(C)	Ammonification	Ď	Nitrogen fixation
	$\langle \rangle$		$\langle \rangle$	5

31.	Cocai	ne is a powerful stimulant of				
	(A)	Heart beat	(B)	Central nervous system		
	(C)	Muscles	(D)	Breathing		
32.	Diagr	nosis of typhoid is done by				
	(A)	ESR	(B)	ELISA test		
	(C)	DLC	(D)	WIDAL test		
33.	Scien	tific study of human population is called				
	(A)	Demography	(B)	Geography		
	(C)	Anthropology	(D)	Biogeography		
34.	Vinegar is obtained due to biological activity of					
	(A)	Acetobactor	(B)	Lactobacillus		
	(C)	Nostoc	(D)	Anabaena		
35.	The fe	ollowing disease involves change in chrome	osome n	umber		
	(A)	Colour blindness	(B)	Haemophilia		
	(C)	Down's syndrome	(D)	Jaundice		
36.	Ringv	vorm disease is caused by				
	(A)	Annelid	(B)	Helminthes		
	(C)	A fungus	(D)	A bacterium		
37.	The o	pen type of circulatory system is found in				
	(A)	Nereis	(B)	Octopus		
	(C)	Prawn	(D)	Frog		
38.	The p	rocess of translation is				
	(A)	Ribosome synthesis	(B)	Protein synthesis		
	(C)	DNA synthesis	(D)	RNA synthesis		
39.	Deng	ue is transmitted by				
	(A)	Culex	(B)	Male anopheles		
	(C)	Aedes	(D)	Female anopheles		
40.	Youn	g of cockroach is called				
	(A)	Ephyra	(B)	Nymph		
	(C)	Maggot	(D)	Juvenile		
41.	Number of mitotic divisions required to produce 128 cells from a single cell is					
	(A)		(B)	14		
	(C)	16	(D)	32		
42.	Distance between two adjacent nitrogen bases of DNA is					
	(A)	2.4 A ^o	(B)	3.4 A ^o		
	(\mathbf{C})	24 Δ ⁰	(\mathbf{D})	34 A ^o		
10	(0)		(D)	J 7 1 1		
43.	In add	dition to the nucleus, DNA also occurs in		т		
	(A)	Mitochondria	(B)	Lysosome		
	(C)	Ribosome	(D)	Golgi appratus		
44.	First	photosynthetic organisms to develop on ear	th were	D' /		
	(A)	Bacteria	(B)	Diatoms		
	(C)	Cyanobacteria	. (D)	Green algae		
45.	The v	ector for causing sleeping sickness in man	1S	т т (1		
	(A)	House fly	(B)	I se-I se IIy		
10	(\mathbf{U})		(D)	wosquito		
40.	Unromosomes are stained with					
	(A)	Saffranine	(B)	Acetocarmine		
	(C)	Sciff's reagent	(D)	Ethanol		

47.	The universal recipient blood group is (A) A	(B) AB
	(C) O	(D) B
48.	Arsenic pollutant in drinking water causes	
	(A) Liver and lung diseases	(B) Paralysis
	(C) Kidney diseases	(D) Cancer
49.	In the colony of Apis indica, the one formed	d by parthenogenesis is
	(A) Queen	(B) Worker
	(C) Drone	(D) Both B and C
50.	The pollutant responsible for chromosomal	mutations in man is
	(A) Lead	(B) Manganese
	(C) Arsenic	(D) Mercury
51.	While walking on smooth surface one should	ld take small steps to ensure
	(A) Large friction	(B) Small friction
	(C) Larger normal force	(D) Smaller normal force
52.	What happens to a vehicle travelling in an u and tires suddenly disappears	inbanked curved path if the friction between the road
	(A) Moves along tangent	(B) Moves radially in
	(C) Moves radially out	(D) Moves along the curve
53.	A ball of mass 0.2 kg strikes an obstacle and changes from 20m/s to 10m/s the magnitude (A) $2\sqrt{2}$	d moves at 60° to its initial direction. If its speed e of impulse received by the ball isNs
	$(\mathbf{A}) \underline{2}\sqrt{7}$	(D) $2\sqrt{3}$
	$(C) = 2\sqrt{5}$	$(D) 3\sqrt{2}$
54.	A spacecraft of mass 2000 kg moving with of mass 500 kg is stationary. The velocity o	600 m/s suddenly explodes into two pieces. One piece f other part in m/s is
	(A) 600 (C) 1500	(B) 800 (D) 1000
	(C) 1500	(D) 1000
55.	16 kg 8 kg 4 kg 4 kg	The force on 16 kg is
	(A) 140N	(B) 120N
	$(\mathbf{C}) 100\mathbf{N}$	$\begin{array}{c} (D) & 12010 \\ (D) & 80N \end{array}$
56.	A man of mass 40 kg is at rest between the 0.8, find the normal reaction exerted by wal	walls. If coeff. of friction between man and wall is ll on man (take $g = 10 \text{ m/s/s}$)

57.	h		
	Find minimum height in terms of D to cor	nplete the loop	
	(A) $7D/4$ (C) $5D/4$	(B) (D)	9D/4 3D/4
58.	Gravitational force between two bodies is liquid of specific gravity 3. The gravitatio $(A) = F/9$	F. The space an nal force will be	round the mass is now filled with a e 3F
	$\begin{array}{ccc} (R) & R \\ (C) & F \end{array}$	(D) (D)	F/3
59.	A man weighs 75 kg on the surface of eart (A) infinity	th. His weight c (B)	on the geostationary satellite is 150kg
60	(C) zero g at a depth of 1600 km inside the earth in	(D)	/5/2 Kg
00.	(A) 6.65	(B)	7.35
	(C) 8.65	(D)	4.35
61.	A block of mass 19 M is suspended by a s	tring of length	1m. A bullet of mass M hits it and gets
	embedded in it. If the block completes the (A) 140	e vertical circle	the velocity of bullet in m/s is $\frac{1}{100}$
	(A) 140	(В) (D)	20√19.6 20
62	(C) $20\sqrt{9.8}$	(D) d rehounds to 1	5m The % loss of energy during the
02.	impact is		.5m. The 78 loss of energy during the
	(A) 20	(B)	62.5
	(C) 23	(D)	60
63.	25 kg of sand is deposited each second on	a conveyor bel	t moving at 10m/s. The extra power
	required to maintain the belt in motion is		• • • • • • •
	(A) $2600W$ (C) $225W$	(B)	250W
64	(C) 525 W A uniform rod of mass M and length L sta	(D) nding vertically	2500 w
04.	slipping at the bottom. The moment of ine	rtia will be	y on a nonzontal noor fails without
	(A) $ML^2/3$	(B)	$ML^2/6$
	(C) $ML^{2}/9$	(D)	$ML^2/12$
65.	If the velocity of C.M of a rolling body is	V, then velocity	y of highest point in the body will be
	$(A) \sqrt{2V}$	(B)	V N/ /2
	(C) = 2V	(D)	
66.	The angular momentum of two rotating be of their rotational K.E is $(A) = 1.2$	dies are equal.	If the ratio of their M.I is 1:4, the ratio
	(A) 1.2 (C) 1.4	(В) (D)	2.1 4·1
67	The level of water in a tank is 5m. A hole	1 cm^2 is made	at the bottom. The rate of leakage in m^3
07.	/s is (take $g=10 \text{ m/s/s}$)	i elli is inude i	
	(A) 10^{-3}	(B)	10 ⁻⁴
	(C) 10	(D)	10 ⁻²
68.	Two blocks A and B float in water. A float $3/5^{\text{th}}$ of its volume immersed. The ratio of	ts with 1/4 th of their densities	its volume immersed and B floats with is
	(A) 5:12	(B)	12:5
	(C) 3:20	(D)	20:3

69.	The terminal velocity of a spherical ball of lead of radius R is Vwhile falling through a vi			R is Vwhile falling through a viscous		
	(A)	V/R is constant	(B)	VR is constant		
	(C)	V is constant	(D)	V/R^2 is constant		
70.	A hyd	lraulic press uses a piston of 100 cm ² to exert	a force	e of 10^7 dynes on water. The area of the		
other piston that supports a mass of 2000 kg is (take $g = 10 \text{ m/s/s}$)				10m/s/s)		
	(A)	$100 \mathrm{cm}^2$	(B)	$10^9 {\rm cm}^2$		
	(C)	$2 \times 10^4 \text{ cm}^2$	(D)	$2 \times 10^{10} \text{ cm}^2$		
71.	When	kerosene and coconut oil of coeff. of vis	scosity	v 0.002 and 0.0154 Ns/m ² are allowed		
	throug	through the same pipe, under same pressure difference and same time collects 1 lit of coconut oil.				
	The v	olume of kerosene that flows is				
	(A)	5.5 lit	(B)	6.6 lit		
	(C)	7.7 lit	(D)	8.8 lit		
72.	There	is a circular hole in metal plate. When the pl	ate is l	neated the radius of the hole becomes		
	(A)	increased	(B)	decreased		
	(C)	unchanged	(D)	depends on metal		
73.	Speci	fic heat of a substance depends on 1. Nature of	of subs	stance. 2. Mass of substance. 3. Heat		
	given	to substance				
	(A)	Only one is correct	(B)	Both 1 and 2 are correct		
	(C)	All are correct	(D)	Only 1 and 3 are correct		
74.	In a g	ive process dW=0, dq is <0 then for a gas				
	(A)	Temperature increases	(B)	Volume decreases		
	(C)	Pressure increases	(D)	Pressure decreases		
75.	The efficiency of carnot engine depends on					
	(A)	Working substance	(B)	Sink temperature		
	(C)	Source temperature	(D)	Both B and C		
76.	A 200) turn coil of self inductance 30 mH carries a	curren	t of 5 mA. Find the magnetic flux linked		
	with e	each turn of coil.	<i></i> .			
	(A)	$7.5 \times 10^{-9} \text{Wb}$	(B)	1.6 x 10 ⁻⁷ Wb		
	(C)	3 x 10 ⁻⁷ Wb	(D)	1.5 x 10 ⁻⁷ Wb		
77.	The instantaneous value of current in an AC circuit is $I = 2 \sin (100 \pi t + \pi/3)$ A. At what first					
	time t	the current will be maximum?		1/200		
	(A)	1/100 s	(B)	1/200 s		
-	(C)	1/500 s	(D)	ls		
78.	What	in electric system represents force in mechan	ical sy	vstem ?		
	(A)		(B)	1		
-	(C)		(D)	q		
79.	A cap	pacitor of 1 μ F is charged with 0.01C of electr	TCITY.	How much energy is stored in it?		
	(A)	30 J	(B)	40 J		
	(C)	50 J	(D)	60 J		
80.	An el	ectromagnetic wave is travelling in vacuum w	with a s	speed of 3 x 10° m/s. Find the velocity in		
	a medium having relative electric and magnetic permeability 2 and 1, respectively.					
	(A)	$3/\sqrt{2} \times 10^{\circ} \text{m/s}$	(B)	1.5 x 10°m/s		
	(C)	2 x 10°m/s	(D)	No change		

81. Trace the path of ray of light passing through a glass prism as shown in the figure. If the refractive index of glass is $\sqrt{3}$, find out the value of angle of emergence from prism.

	60		
	(A) 30 (C) 60	(B) (D)	45 75
82.	Light wave from two coherent sour the ratio of maxima and minima of	rces of intensities in rational terms in the interference patter	tio 64:1 produces interference. Calculate rn.
	(A) 8:1 (C) 9:7	(B) (D)	64:1 81:49
83.	In young's experiment, the width of mm. What will be the fringe width index 1.33?	of the fringes obtained , if the entire apparatu	with light of wavelength 6000 A° is 2 s is immersed in a liquid of refractive
	(A) 1 mm	(B)	1.5 mm
	(C) 2 mm	(D)	2.5 mm
84.	Unpolarised light is incident on pl degrees, so that the reflected and re	ane glass surface. What efracted rays are perpe	at should be the angle of incidence in ndicular to each other?
	(A) 37	(B)	47
0.5	(C) 57	(D)	6/
85.	difference of 100 V.	gth associated with an	electron, accelerated through a potential
	(A) $1.227A^{\circ}$	(B)	12.27Ű
0.6	(C) 122.7A	(D)	
86.	A particle with rest mass m_0 is mov associated with it?	ving with velocity c. V	vhat is the de-Broglie wavelength
	(A) infinity	(B)	zero
~-	(C) radio wave	(D)	X ray
87.	Which among the following series	gives visible light?	Dalmar
	(A) Lyman (C) Bracket	(B) (D)	None
00	Identify the logic operation perform	(D)	None
00.	A	ned by this circuit	
)
			OD
	(A) AND (C) NAND	(B) (D)	OK NOR
89.	The number of silicon atoms per m per m ³ of arsenic and 5 x 10^{20} atom $n = 1.5 \times 10^{16} m^{-3}$	h^3 is 5 x 10^{28} . This is do as per m ³ of indium. Ca	oped simultaneously with 5 x 10^{22} atoms alculate the number of holes, given that
	$(\Lambda) = \frac{1.5 \times 10^{10} \text{ m}^{-3}}{10^{9} \text{m}^{-3}}$	(B)	$4.95 \times 10^{22} \text{m}^{-3}$

- 90. Two charges $+5\mu C$ and $-5\mu C$ are placed 5 mm apart. Determine E at a point 10 cm from centre on the positive charge side along the axial line.
 - (A) 4.5×10^{5} N/C (B) 4.5×10^{5} N/C (D) 4.5×10^{-5} NC
- 91. If the Gaussian surface is so chosen that there are some charges inside and some outside then the electric field is due to
 - (A) Only inside charges

(B) Only outside charges

(C) All the charges

- (D) Cannot determine
- 92. The following is a diagram showing the variation of E with r from centre of uniformly charge spherical shell of radius R

R

93. Net capacitance of 3 identical capacitor in series is 1 μ *F*.What is the net capacitance in μ *F* if connected in parallel?

(A)	3	(B)	6
(C)	9	(D)	12

r

94. An inductor of 5H carries a steady current of 2A. In what time if the current is made zero can a 40V self induced emf be produced in the inductor.

(A)	2s	(B)	1s
(C)	0.5s	(D)	0.25s

95. A cell of emf E and internal resistance r gives 0.5A with R=12 ohms and 0.25 with R = 25 ohms. Its internal resistance in ohms will be

(A)	0.5	(B)	1
(C)	2	(D)	3

Find current in the following circuit 2Ω 1Ω 4Ω 5Ω 2Ω (A) 1A (B) 2A 3A (D) 4A (C) 97. Two identical circular loops P and Q of radius r are placed in parallel planes with same axis at a distance of 2r. Find B at the midpoint of the axis between them if same current I flows through both loops. $\mu_0 I/2^{3/2} r$ (B) $\mu_0 2I/2^{3/2}r$ (A) (D) Cannot be determined (C) $\mu_0 I/4\pi r$ A block of mass 4 kg is kept on a rough horizontal surface. The coefficient of static friction is 98. 0.8. If a force of 19 N is applied on the block parallel to the floor, then the force of friction between the block and floor is: (A) 19N **(B)** 18 N (C) 16N (D) 9.8N 99. Current in a circuit falls steadily from 2A to 0A in 10 ms. Calculate L if emf induced is 200V. (A) 1H**(B)** 2H(C) 3H (D) 4H Self inductance of the air core inductor increases from 0.01 mH to 10 mH on introducing an iron 100. core. What is the relative permeability of the core used? (A) 500 **(B)** 800 (C) 900 (D) 1000 101. Among the following, the most stable complex is $[Fe (H_2O)_6]^{3+}$ $[Fe (C_2O_4)_3]^{3-}$ $[Fe (NH_3)_6]^{3+}$ (A) (B) (D) $[Fe (Cl)_6]^3$ (C) 102. Which is the correct coordination number (C.N) and oxidation number (O.N) of the transition metal atom in $[Co(NH_3)_2(H_2O)_2Cl_2]^+$? C.N=3, O.N=+1 (B) C.N=4, O.N=+2(A) C.N=6, O.N=+1 (D) C.N=6, O.N=+3 (C) 103. In a solid, oxide ions are arranged in ccp, cations A occupy one sixth of the tetrahedral voids and cation B occupy one third of the octahedral voids. The formula of the solid is: ABO₃ (A) (B) A₃BO AB₃O (C) (D) $A_3B_3O_3$

96.

- 104. On mixing acetone to methanol some of the hydrogen bonds between methanol molecules break. Which of the following statements is correct about the above process?
 - (A) At specific composition methanol acetone mixture will form minimum boiling azeotrope and show positive deviation from Raoult's law
 - (C) At specific composition methanol acetone mixture will form minimum boiling azeotrope and show negative deviation from Raoult's law
- At specific composition methanol (B) acetone mixture will form maximum boiling azeotrope and show positive deviation from Raoult's law
- (D) At specific composition methanol acetone mixture will form maximum boiling azeotrope and show negative deviation from Raoult's law

formaldehyde< carbon dioxide

- 105. $K_{\rm H}$ value for argon, carbon dioxide, formaldehyde and methane gases are 40.39, 1.67, 1.83 X 10⁻⁵ and 0.413, respectively. The correct arrangement of these gases in the order of their increasing solubility is:
 - (A) formaldehyde<methane<carbon dioxide<argon
 - <methane<argon (D)

(D)

(B)

- argon<carbon dioxide< (C) methane<formaldehyde
- argon <methane <carbon dioxide <formaldehvde
- 106. The number of faradays of electricity required for electrolytic conversion of the mole of nitrobenzene to aniline is:
 - (A) 3F 4F (B)
 - (C) 6F (D) 5F
- 107. The positive value of the standard electrode potential of Ag^+/Ag indicates that: **(B)** This redox couple is a stronger
 - (A) This redox couple is a stronger reducing agent than H^+/H_2 couple
 - Ag can displace H₂ from acid (C)
- Ag can displace H_2 from base Milk is refrigerated in order to slow the rate of decomposition by bacterial action. The decrease in 108. reaction rate is due to:
 - (A) A decrease in surface area
 - A decrease in the fraction of particles (C) possessing sufficient energy
- 109. Which of the following statements is not correct?
 - The rate of a reaction decreases with (A) passage of time as concentration of reactants decrease
 - (C) For a zero order reaction the concentration of reactants remains changed with passage of time

- (B) A decrease in \triangle H for the reaction
- The introduction of an alternative (D) pathway with greater activation energy.

oxidizing agent than H^+/H_2 couple

- **(B)** The instantaneous rate a reaction is same at any time during the reaction
- (D) The rate of a reaction decreases with increase in concentration of reactant (s)
- 110. Which of the following gases shows the lowest adsorption per gram of charcoal? The critical temperatures are given in parenthesis:
 - (A) H₂ (33K) (B) CH₄(190K) (D) $CO_2(304K)$ (C) SO₂(630K)
- Freundlich adsorption isotherm is given by the expression $x/m=kp^{1/n}$. Which of the following 111. statements are false?
 - When 1/n=0, the adsorption is independent of pressure. i.
 - ii. When n=0, the plot of x/m vs p graph is a line parallel to x axis.
 - When 1/n=0, the adsorption is directly proportional to pressure. iii.
 - When n=0, plot of x/m vs p is a curve iv.
 - i and ii (B) ii and iv (A)
 - (C) i and iii
- (D) all are false

112.	In the extraction of chlorine by electrolysis of an aqueous solution of sodium chloride, which of the following statements are true?						
	i. ΔG^0 for the overall reaction is positive						
	ii	ΔG^0 for the overall reaction is negative	ve				
	iii	E^0 for the overall reaction is positive					
	iv	E^0 for the overall reaction is negative					
	(A)	i and iv	(B)	i and iii			
	(C)	ii and iii	(D)	iii and iv			
113.	Whic	n of the following pairs of ions are isoelectro	nic and	d isostructural?			
	(A)	NO_2^+ and NO_3^-	(B)	ClO_3^- and ICl_4^-			
	(C)	XeO_3^{2-} and PCl_3	(D)	ClO_3^- and SO_3^{2-}			
114.	Whicl	n of the following hydrides is the strongest re	ducing	g agent?			
	(A)	NH ₃	(B)	PH ₃			
	(C)	AsH ₃	(D)	SbH ₃			
115.	Consi	der the reactions,					
	i.	$Zn + Conc. HNO_3 (hot) \longrightarrow Zn (N)$	$(O_3)_2 +$	$+X + H_2O$			
	ii	$Zn + dil. HNO_3 (cold) \longrightarrow Zn (label{eq:alpha})$	$NO_3)_2$ -	$+ Y + H_2O$			
		Compounds X and Y are, respectively					
	(A)	N_2O , NO	(B)	NO_2 , NO_2			
	(C)	N_2, N_2O	(D)	NO ₂ , NO			
116.	When	KMnO ₄ acts as an oxidizing agent in weakly	y alkali	ine medium, the oxidation number of			
	mang	anese decreases by:	(T)	_			
	(A)	1	(B)	2			
	(C)	3	(D)	5			
117.	Acidified potassium dichromate solution turns green when Na ₂ SO ₃ is added to it due to the formation of:						
	(A)	CrSO ₄	(B)	$Cr_2(SO_4)_3$			
	(C)	$\operatorname{CrO_4}^{2-}$	(D)	$Cr_2(SO_3)_3$			
118.	The d-electron configurations of Cr^{2+} , Mn^{2+} , Fe^{2+} and Co^{2+} are d^4 , d^5 , d^6 and d^7 , respectively.						
	Which one of the following complexes will exhibit minimum paramagnetic behavior? (atomic $\int G - 24 M = 25 F - 26 G = 27$)						
	numb	ers of $Cr=24$, Mn=25, Fe=26, Co=27)	(D)	$[M_{m}(H, O)]^{2+}$			
	(A)	$[Cf(H_2O)_6]$ $[F_2(H_1O)_1^{2+}]$	(B) (D)	$[MIn(H_2O)_6]$ $[C_2(H_1O)_1^{2+}]$			
110	(C)		(D)				
119.	is:						
	(A)	2-Ethoxypentane	(B)	Pent-1-ene			
	(C)	Cis-Pent-2-ene	(D)	Trans-Pent-2-ene			
120.	Whic	n of the following undergoes nucleophilic su	bstituti	on exclusively by S_N^1 mechnism?			
	(A)	Chloroethane	(B)	Isopropyl chloride			
	(C)	Chlorobenzene	(D)	Benzyl chloride			
121.	The number of possible stereoisomers for CH ₃ CH=CHCH ₂ CH(Br)CH ₃ is:						
	(A)	8	(B)	2			
	(C)	4	(D)	6			
122.	2-Met	hoxy-2-methylpropane on heating with HI p	roduce	s:			
	(A)	Methanol and sec-propyl iodide	(B)	Methyl iodide and tert-butyl alcohol			
	(C)	Methyl iodide and isobutene	(D)	Methanol and tet-butyl iodide			
123.	The le	east acidic compound among the following is	:				
	(A) o-Nitrophenol (B) m-Nitrophenol						
	(C)	p-Nitrophenol	(D)	Phenol			

124.	An alkene C_7H_{14} on reductive ozonolysis gives an	aldehy	de with formula C_3H_6O and a ketone.	
	I he ketone is:	(D)	2 Douton on a	
	(A) 2-Butanone (C) 2 Pontanone	(B)	2-Pentanone Bronanana	
	(C) 3-Feilianone	(D)	Flopallolle	
125.	The increasing order of the rate of addition of HCN Acetone iii) Acetophenone iv) benzophenone	V to the	e compounds i) Formaldehyde ii)	
	(A) $i < iii < iii < iv$	(B)	iv < ii < iii < i	
	(C) $iv < iii < ii < i$	(D)	iv< i< ii< iii	
126.	The carboxylic acid that does not undergo Hell-Vo	hlard-	Zelinsky reaction is:	
	(A) CH ₃ COOH	(B)	(CH ₃) ₂ CHCOOH	
	(C) $CH_3CH_2CH_2COOH$	(D)	(CH ₃) ₃ CCOOH	
127	NaNO ₂ /HCl P/Br ₂ NH ₂			
127.	$C_2H_5NH_2 \longrightarrow X \longrightarrow Y \longrightarrow$	Ζ		
	(excess)	2		
	In the above sequence, Z is:			
	(A) cyanoethane	(B)	ethanamide	
	(C) methanamine	(D)	Ethanamine	
128.	The attachment of which of the following group at value?	para p	position in aniline will raise the K_b	
	$(A) = SO_2H$	(B)	-0H	
	$(\Gamma) -F$	(D)	-Br	
100		(D)		
129.	Which of the following is an example of globular p	orotein	12	
	(A) myosin (C) konstin	(B)	collagen	
	(C) keralin	(D)	naemogroom	
130.	Which one of the following is synthesized in our b	ody by	v sun rays?	
	(A) Vitamin D	(B)	Vitamin B	
	(C) Vitamin K	(D)	Vitamin A	
131.	Caprolactum is the is the starting material for the s	ynthes	is of	
	(A) Nylon-6	(B)	Nylon6,6	
	(C) Terylene	(D)	Nylon 10	
132.	The species which can serve as an initiator for cation	onic po	olymerization is	
	(A) Lithium aluminium hydride	(B)	Nitric acid	
	(C) Aluminium chloride	(D)	BuLi	
133	Aspirin is an			
155.	(A) analgesic	(B)	antipyretic	
	(C) antimalarial	(D)	Both analgesic and antipyretic	
124	The equivalent mass of iron in the reaction $2E_0 + 2$	(-)	2EaCl in:	
134.	The equivalent mass of non in the reaction $2Fe + 3$ (A) Half of its atomic mass	(\mathbf{P})	One third of its atomic mass	
	(A) That of its atomic mass (C) Same as atomic mass	(\mathbf{D})	One fourth of its atomic mass	
105	(c) Same as atomic mass	(D)		
135.	Which of the following sets of quantum numbers is	s corre	ect for an electron in 4f subshell?	
	(A) $n=4, l=3, m=4, s=+1/2$	(B)	n=4, l=3, m=-4, s=-1/2	
	(C) $n=4, l=3, m=+1, s=+1/2$	(D)	n=3, l=2, m=-2, s=+1/2	
136.	The correct sequence of atomic radii is:			
	(A) Na>Mg>Al>Si	(B)	Al>Si>Na>Mg	
	(C) Si>Al>Mg>Na	(D)	Si>Al>Na>Mg	
137.	In wh	ich of the following, the bond angle around t	he cen	tral atom is maximum?
-------	---------------------	--	----------------	--
	(A)	NH ₃	(B)	$\mathrm{NH_4}^+$
	(C)	PCl ₃	(D)	SCl ₂
138.	Whic	h of the following molecule does not exist		
	(A)	NF ₃	(B)	NF ₅
	(C)	PF ₅	(D)	N_2H_4
139.	If hel	ium is allowed to expand in vacuum, it libera	tes hea	at because
	(A)	It is an inert gas	(B)	It is an ideal gas
	(C)	Its critical temp. is low	(D)	It is a light gas
140.	i) H ₂ (g) + 1/2O ₂ (g) \rightarrow H ₂ O(I)+ x KJ ii) H ₂ (g) +	$1/2O_{2}$	$(g) \rightarrow H_2O(g) + y KJ$; For the given two
	reacti	ons,	2	(8) 2-(8) 5 - 7 - 8 8
	(A)	x>y	(B)	x <y< td=""></y<>
	(C)	x=y	(D)	x+y=0
141.	If the	bond dissociation energies of XY, X_2 , Y_2 (a)	l diato	mic molecules) are in the ratio 1:1:0.5.
	respec	ctively and Δ_{f} of XY is -200KJmol ⁻¹ , the bo	nd dis	sociation energy of X_2 will be:
	(A)	400 KJmol ⁻¹	(B)	300 KJmol^{-1}
	(C)	200 KJmol ⁻¹	(D)	100 KJmol ⁻¹
142.	What	will be the correct order of vapour pressure of	of wate	er, ethanol and ether at 30° C? Given that
	amon	g these compounds water has maximum boil	ing poi	int and ether has minimum boiling point.
	(A)	Water <ether<ethanol< td=""><td>(B)</td><td>Water<ethanol<ether< td=""></ethanol<ether<></td></ether<ethanol<>	(B)	Water <ethanol<ether< td=""></ethanol<ether<>
	(\mathbf{C})	Fther <ethanol<water< td=""><td>(D)</td><td>Ethanol<ether<water< td=""></ether<water<></td></ethanol<water<>	(D)	Ethanol <ether<water< td=""></ether<water<>
1.4.2	(C) W/L:-1		(D)	
143.	which	n of the following will occur if a 0.1W solution	on of a	weak actu is difuted to 0.011vi at
	(Λ)	$[\text{H}^+]$ will decrease to 0.001M	(D)	nU will deereese
	(\mathbf{A})	Percentage ionization will increase	(D)	K will increase
1 4 4		h a f tha fallessing an acian increase	(D)	\mathbf{X}_{a} with increase
144.	which (A)	$M_{PO}^{2-} \rightarrow M_{PO}^{-1}$	(\mathbf{D})	$M_{\rm A}$ electrons per mole of it ?
	(\mathbf{A})	$MnO_4 \rightarrow MnO_4$ $MnO_2 \rightarrow MnO_4$	(D)	$VIIIO_4 \rightarrow VIII$ $C_TO^{2^-} \rightarrow C_T^{3^+}$
145	(C)	$1 \times 10^{-4} \times 10^{-1} \times 10^{-2}$	(D)	
145.	30-vo	20% IL O have been a	(D)	20. fll O selection containing 1. f
	(A)	30% H ₂ O ₂ by volume	(D)	$_{12}$ $_{12$
	(\mathbf{C})	$1 \text{ cm}^3 \text{ of solution liberates } 30 \text{ cm}^3 \text{ of } \Omega_2$	(D)	30 cm^3 of the solution contains one
	(C)	gas at STP	(D)	mole of H_2O_2
146	The c	orrect sequence of covalent character is renre	sented	hole of H ₂ O ₂
140.	THC C	orrect sequence of covarent enaracter is repre	sentee	i dy.
	(A)	LiCl <nacl<becl<sub>2</nacl<becl<sub>	(B)	BeCl ₂ <licl<nacl< td=""></licl<nacl<>
	(C)	$NaCl < LiCl < BeCl_2$	(D)	$BeCl_2 \le NaCl \le LiCl$
147.	Whic	h of the following is known as pyrene?		
	(A)	CCl_4	(B)	CS_2
	(C)	S_2Cl_2	(D)	Solid CO ₂
148.	The n	nost stable carbocation amongst the following	g is:	
	(A)	$(CH_3)_2CH^+$	(B)	Ph_3C^+
	(C)	$CH_3CH_2^+$	(D)	$CH_2 = CH - CH_2^+$
149.	The n	nolecule that will have dipole moment is:		
	(A)	2,2-Dimethylpropane	(B)	cis-2-Butene
	(C)	trans-2-Butene	(D)	2,2,3,3-Tetramethylbutane
150.	Of the	e five isomeric hexanes, the isomer which can	n give	two monochlorinated compound is:
	(A)	2-Methylpentane	(B)	2,2-Dimethylbutane
	(C)	2,3-Dimethylbutane	(D)	n-Hexane

Which of the following cells in plants show totipot	ency	
(A) Xylem vessels	(B)	Sieve tubes
(C) Meristem	(D)	Cork cells
Father of taxonomy is		
(A) John Ray	(B)	Linnaeus
(C) Aristotle	(D)	Lamark
Which of the following has more characters in con	mon	
(A) Species	(B)	Genus
(Γ) Class	(D)	Division
Riccia is a liverwort as it	(D)	Division
(Λ) produces liver diseases	(\mathbf{R})	is present in liver
(\mathbf{C}) cures liver diseases	(\mathbf{D})	is like a flat lobed thallus
(C) curves liver diseases	(D)	is like a flat lobed thanus
(A) Large leaves	(D)	Ciliated groups
(A) Large leaves	(B)	Cinated sperms
(C) Naked ovules	(D)	Scale leaves
A root parasite is		
(A) Cuscuta	(B)	Striga
(C) Brassica	(D)	loranthus
Roots that grow from any part of the plant body oth	her that	an the radicles are
(A) Adventitious roots	(B)	Tap roots
(C) Modified roots	(D)	Aerial roots
Parallel venation is a characteristic of		
(A) Parasitic plants	(B)	Xerophytic plants
(C) Legumes	(D)	Grasses
A bisexual flower which never opens in its life spa	n is ca	lled
(A) Cleistogamus	(B)	Heterogamus
(C) Homogamus	(D)	Dichogamus
Ouiescent centre is located in	Ì,	C C
(A) Shoot apex	(B)	Root apex
(C) Leaf apex	(D)	Bud apex
Casparian strips occur in the cells of		I
(A) Epidermis	(B)	Exodermis
(C) Endodermis	(D)	Hypodermis
Vascular hundles are absent in	(2)	nypouonins
(A) Monocots	(B)	Dicots
(Γ) Gymposperms	(\mathbf{D})	Pteridonhytes
A aranchyma is derived from	(D)	rtendophytes
(A) Paranchuma	(\mathbf{P})	Salaranahuma
$(A) \text{Fatenchynia} \\ (C) \text{Dhloom}$	(D)	Scierenciiyina
(C) Philoem	(D)	Aylem
vascular bundle naving cambium is	(D)	
(A) closed	(B)	open
(C) conjoint	(D)	collateral
What do you eat in coconut		
(A) Embryo	(B)	Mesocarp
(C) Entire seed	(D)	Fruit wall
Phyllode is a modification of		
(A) Flower	(B)	Bud
(C) Root	(D)	Petiole
Fingermillet is		
(A) Eleusine	(B)	Setaria
(C) Pennisetum	(D)	Sorghum
	 Which of the following cells in plants show totipot (A) Xylem vessels (C) Meristem Father of taxonomy is (A) John Ray (C) Aristotle Which of the following has more characters in con (A) Species (C) Class Riccia is a liverwort as it (A) produces liver diseases (C) cures liver diseases (C) cures liver diseases (C) Naked ovules A root parasite is (A) Cuscuta (C) <i>Brassica</i> Roots that grow from any part of the plant body otf (A) Adventitious roots (C) Modified roots Parallel venation is a characteristic of (A) Parasitic plants (C) Legumes A bisexual flower which never opens in its life spatiant (C) Legumes (C) Leagumes (C) Leaf apex (C) Endodermis (C) Endodermis (C) Endodermis Vascular bundles are absent in (A) Monocots (C) Phloem Vascular bundle having cambium is (A) closed (C) entire seed Phyllode is a modification of (A) Flower (C) Root Fingermillet is (A) <i>Eleusine</i> (C) <i>Pennisetum</i> 	Which of the following cells in plants show totipotency(A)Xylem vessels(B)(C)Meristem(D)Father of taxonomy is(A)John Ray(B)(C)Aristotle(D)Which of the following has more characters in common(A)Species(B)(C)Aristotle(D)Which of the following has more characters in common(A)Species(B)(C)Class(D)Riccia is a liverwort as it(A)produces liver diseases(D)(A)produces liver diseases(D)Gymnosperms are characterized by(A)Large leaves(B)(C)nate grow from any part of the plant body other that(A)Cuscuta(B)(C)Modified roots(D)Parallel venation is a characteristic of(A)Parasitic plants(B)(C)Legumes(D)A bisexual flower which never opens in its life span is ce(A)Cleistogamus(D)Quiescent centre is located in(A)Shoot apex(B)(C)Leaf apex(D)Casparian strips occur in the cells of(A)(A)Shoot apex(B)(C)Endodermis(D)Vascular bundles are absent in(A)Parenchyma(B)(C)Endodermis(D)Aerenchyma is derived from(A)(A)Parenchyma(B)(C)Conjoint(D)Wascular bundle having cambium is(A)Closed(B)(C)<

168.	Microsporophyll of Cycas is equivalent to	of	angiosperms
	(A) Sepal	(B)	Stamen
	(C) Ovary	(D)	Ovule
169.	Jackfruit is an example of		
	(A) Multiple fruit	(B)	Aggregate fruit
	(C) Simple fruit	(D)	None of these
170.	Anther wall in angiosperms contain how many	wall laver	S
	(A) 3	(B)	4
	(C) 5	(D)	6
171	If an endosperm cell of angiosperm has 36 chro	mosomes	the root cell should have
1,11	(A) 18	(B)	16
	(C) 4	(D)	24
172	Amino acid synthetase enzyme is activated by	(2)	2.
1/2.	(A) $M\sigma$	(B)	Cu
	(Γ) Tn	(D)	Fe
173	Number of net gain ATP in aerobic respiration i		10
175.	(Δ) 2	(B)	42
	$\begin{array}{c} (A) & 2 \\ (C) & 38 \end{array}$	(D)	41
174	(C) 56 One glucose molecule partially oxidized in anot	(D)	+1
1/4.	$(\Lambda) = 20 \text{ ATD}_{\odot}$	(\mathbf{D})	
	$(A) 50 \text{ ATP}_{a}$	(D)	30 ATFS
175	(C) 2 AIFS	(D)	15 AIFS
173.	(A) Drimory consumption	(D)	Drives and the same
	(A) Primary consumers	(B)	None of these
176	(C) Decomposers	(D)	None of these
1/6.	The largest cell in the embryo sac is		F
	(A) Central cell	(B)	Egg
1.77	(C) Synergias	(D)	None of these
177.	Double membrane is absent in		
	(A) Mitochondria	(B)	Chloroplast
1 = 0	(C) Peroxisome	(D)	Golgi body
178.	DNA content is doubled in stage of c	ell divisio	on l
	(A) Prophase	(B)	Metaphase
	(C) GI-phase	(D)	S-phase
179.	A group of individuals of different species is ca	lled	~ ·
	(A) Population	(B)	Community
	(C) Biome	(D)	None of these
180.	Purines are		
	(A) Adenine and Guanine	(B)	Guanine and Cytosine
	(C) Thymine and Cytocine	(D)	Adenine and Thymine
181.	The pigment which is absent in chloroplast is		
	(A) Chlorophyll 'a'	(B)	Chlorophyll 'b'
	(C) Xanthphyll	(D)	Anthocyanine
182.	Rate of transpiration is measured by		
	(A) Manometer	(B)	Potometer
	(C) Auxanometer	(D)	None of these
183.	The site of primary photochemical reaction is		
	(A) Stroma	(B)	Grana
	(C) Periplast cavity	(D)	Inner layer
184.	Father of green revolution in India is		
	(A) N. Borlaug	(B)	K.C. Mehta
	(C) M.S. Swaminathan	(D)	None of these

185.	Plants	s which grow in shade are		
	(A)	Sciophytes	(B)	Heliophytes
	(C)	Halophytes	(D)	Psamophytes
186.	The a	mount of living material in different trophic	levels i	is called
	(A)	Standing crop	(B)	Standing state
	(C)	Dry weight	(D)	Biomass
187.	In por	nd ecosystem pyramid of number is always		
	(A)	Straight	(B)	Linear
	(C)	Upright	Ď	Inverted
188	Vege	tation dominated by shrubs with few tall trees	s is cal	led
100.	(A)	Serule	(B)	Marsh
	(\mathbf{C})	Grassland	(D)	Forest
189	Total	energy produced during photosynthesis is ca	lled	101050
107.	(Δ)	Total biomass	(B)	Net hiomass
	(\mathbf{A})	Net primary production	(\mathbf{D})	Gross primary production
100		down producers of the accounter are	(D)	Gross primary production
190.		Croop plotte	(\mathbf{D})	Drimowy conguments
	(\mathbf{A})		(Б) (D)	Norse of these
101	(C) TI		(D)	None of these
191.	I ne c	nemical knives of DNA are		
	(A)	Ligases	(B)	Polymerases
100	(C)	Endonucleases	(D)	Iranscriptases
192.	The I	ndian variety of rice patented by an American	n comp	any is
	(A)	IR 8	(B)	Jaya
	(C)	Sona masoori	(D)	Basmati
193.	Pusa	Komal is a variety of		
	(A)	Cowpea	(B)	Wheat
	(C)	Brassica	(D)	Chilli
194.	The s	talk of the ovule that attaches it to the placen	ta in ar	ngiosperms is
	(A)	Pedicel	(B)	Funiculus
	(C)	Integument	(D)	Hilum
195.	Vallis	sneria usually favours		
	(A)	Zoophily	(B)	Entomophily
	(C)	Hydrophily	(D)	Anemophily
196.	An ex	cample of single cell protein is		
	(A)	Spirulina	(B)	Volvox
	(C)	Spirogyra	(D)	Chlamydomonas
197.	Whic	h forest is named as the "Lungs of the planet"	"?	
	(A)	Western ghats	(B)	Eastern ghats
	(C)	Amazon rain forest	(D)	Sahara desert
198.	The e	arth summit held at Rio de Janeiro was in the	e vear	
	(A)	1986	(B)	1902
	(C)	1992	Ď	1996
199	Lioni	fied cell wall occurs in	(-)	
177.	(A)	Endermal cells	(B)	Cambial cells
	(Γ)	Phloem cells	(\mathbf{D})	Xylem cells
200	A elia	le of TS dicot stem shows		
200.	(Δ)	Scattered vascular hundles	(\mathbf{R})	Vascular hundles arranged in a ring
	(\mathbf{A})	Radial vascular hundles	(D)	Closed vascular bundles
	(\mathbf{C})		(D)	Ciusua vasculai bulluits

Sr. No	Question
1.	While walking on smooth surface one should take small steps to ensure(A)Large friction(B)Small friction(C)Larger normal force(D)Smaller normal force
2.	What happens to a vehicle travelling in an unbanked curved path if the friction between the roadand tires suddenly disappears(A)Moves along tangent(B)Moves radially in(C)Moves radially out(D)Moves along the curve
3.	A ball of mass 0.2 kg strikes an obstacle and moves at 60° to its initial direction. If its speed changes from 20m/s to 10m/s the magnitude of impulse received by the ball isNs (A) $2\sqrt{7}$ (B) $2\sqrt{3}$ (C) $2\sqrt{5}$ (D) $3\sqrt{2}$
4.	A spacecraft of mass 2000 kg moving with 600 m/s suddenly explodes into two pieces. One pieceof mass 500 kg is stationary. The velocity of other part in m/s is(A) 600(B) 800(C) 1500(D) 1000
5.	16 kg 8 kg 4 kg 140 N The force on 16 kg is
	(A) 140N (B) 120N (C) 100N (D) 80N
6.	A man of mass 40 kg is at rest between the walls. If coeff. of friction between man and wall is 0.8, find the normal reaction exerted by wall on man (take $g = 10 \text{ m/s/s}$)
	(A) 100 N (B) 250 N (C) 80 N (D) 50 N
7.	h D
	Find minimum height in terms of D to complete the loop(A) 7D/4(B) 9D/4(C) 5D/4(D) 3D/4
8.	Gravitational force between two bodies is F. The space around the mass is now filled with aliquid of specific gravity 3. The gravitational force will be(A) F/9(B) 3F(C) F(D) F/3

9.	A man weighs 75 kg on the surface of earth. H(A) infinity(C) zero	is weight on the geostationary satellite is (B) 150kg (D) 75/2 kg
10.	g at a depth of 1600 km inside the earth in m/s (A) 6.65 (C) 8.65	(B) 7.35 (D) 4.35
11.	A block of mass 19 M is suspended by a string embedded in it. If the block completes the vert (A) 140 (C) $20\sqrt{9.8}$	of length 1m. A bullet of mass M hits it and gets tical circle the velocity of bullet in m/s is (B) $20\sqrt{19.6}$ (D) 20
12.	A rubber ball falls from a height of 4m and reb impact is (A) 20 (C) 23	(B) 62.5(D) 60
13.	 25 kg of sand is deposited each second on a corequired to maintain the belt in motion is (A) 2600W (C) 325W 	nveyor belt moving at 10m/s. The extra power(B) 250W(D) 2500W
14.	A uniform rod of mass M and length L standin slipping at the bottom. The moment of inertia v (A) $ML^{2}/3$ (C) $ML^{2}/9$	g vertically on a horizontal floor falls without will be (B) ML ² /6 (D) ML ² /12
15.	If the velocity of C.M of a rolling body is V, th (A) $\sqrt{2V}$ (C) 2V	then velocity of highest point in the body will be (B) V (D) $V/\sqrt{2}$
16.	The angular momentum of two rotating bodies of their rotational K.E is (A) 1:2 (C) 1:4	are equal. If the ratio of their M.I is 1:4, the ratio (B) 2:1 (D) 4:1
17.	The level of water in a tank is 5m. A hole 1 cm /s is (take $g=10 \text{ m/s/s}$) (A) 10^{-3} (C) 10	2 is made at the bottom. The rate of leakage in m ³ (B) 10^{-4} (D) 10^{-2}
18.	Two blocks A and B float in water. A floats wi 3/5 th of its volume immersed. The ratio of their (A) 5:12 (C) 3:20	th 1/4 th of its volume immersed and B floats with densities is (B) 12:5 (D) 20:3
19.	The terminal velocity of a spherical ball of lead liquid varies with R such that (A) V/R is constant (C) V is constant	 d of radius R is Vwhile falling through a viscous (B) VR is constant (D) V/R² is constant
20.	A hydraulic press uses a piston of 100 cm ² to ex other piston that supports a mass of 2000 kg is (A) 100 cm ² (C) 2×10^4 cm ²	xert a force of 10^7 dynes on water. The area of the (take g = 10m/s/s) (B) 10^9 cm ² (D) 2×10^{10} cm ²

21.	When kerosene and coconut oil of coeff. of viscosity 0.002 and 0.0154 Ns/m ² are followed through the same pipe, under same pressure difference and same time collects 1 lit of coconut oil. The volume of kerosene that flows is		
	(A) 5.5 lit (C) 7.7 lit	 (B) 6.6 lit (D) 8.8 lit 	
22.	There is a circular hole in metal plate. When the p (A) increased	late is heated the radius of the hole becomes (B) decreased	
	(C) unchanged	(D) depends on metal	
23.	Specific heat of a substance depends on 1. Nature given to substance	of substance. 2. Mass of substance. 3. Heat	
	(A) Only one is correct(C) All are correct	(B) Both 1 and 2 are correct(D) Only 1 and 3 are correct	
24.	In a give process $dW=0$, dq is <0 then for a gas		
	(A) Temperature increases	(B) Volume decreases	
0.5	(C) Pressure increases	(D) Pressure decreases	
25.	(A) Working substance	(B) Sink temperature	
	(C) Source temperature	(D) Both B and C	
26.	A 200 turn coil of self inductance 30 mH carries a with each turn of coil.	current of 5 mA. Find the magnetic flux linked	
	(A) 7.5×10^{-7} Wb	(B) 1.6×10^{-7} Wb (D) 1.5×10^{-7} Wb	
27	(C) 5 X 10 WU The instantaneous value of current in an AC circu	(D) 1.5 x 10 wb it is I = 2 sin (100 π t + $\pi/3$) A At what first	
21.	time the current will be maximum?	$1131 - 2311(100 \ h t + h/5) \ A.$ At what hist	
	(A) $1/100 \text{ s}$	(B) 1/200 s	
20	(C) 1/500 s	(D) Is	
28.	(A) L	(B) I	
	(C) $1/C$	(D) q	
29.	A capacitor of 1 μ F is charged with 0.01C of elect	tricity. How much energy is stored in it?	
	(A) 30 J (C) 50 J	(B) 40 J (D) 60 J	
30	An electromagnetic wave is travelling in vacuum	with a speed of 3 x 10^8 m/s. Find the velocity in	
50.	a medium having relative electric and magnetic pe	ermeability 2 and 1, respectively.	
	(A) $3/\sqrt{2} \times 10^8$ m/s	(B) $1.5 \times 10^8 \text{m/s}$	
21	(C) $2 \times 10^{\circ} \text{m/s}$	(D) No change	
31.	refractive index of glass is $\sqrt{3}$, find out the value of	of angle of emergence from prism.	
	60		
	(A) 30	(B) 45	

32.	Light wave from two coherent sources of intensities in ratio 64:1 produces interference. Calcula the ration of maximum and minima of the interference pattern. (A) $8:1$ (B) $64:1$			
	(A) = 6.1 (C) 9:7	(D)	81:49	
33.	In young's experiment, the width of the fringes of mm. What will be the fringe width, if the entire a index 1.33?	obtained apparatu	with light of wavelength 6000 A° is 2 s is immersed in a liquid of refractive	
	(A) 1 mm (C) 2 mm	(B) (D)	1.5 mm 2.5 mm	
34.	Unpolarised light is incident on plane glass surf degrees, so that the reflected and refracted rays a (A) 37	ace. What when the terms of terms o	at should be the angle of incidence in indicular to each other?	
	(C) 57	(D)	67	
35.	Determine the de-Broglie wavelength associated	l with an	electron, accelerated through a potential	
	(A) $1.227A^{\circ}$	(B)	12.27A°	
	(C) 122.7A°	(D)	1227A°	
36.	A particle with rest mass m ₀ is moving with velo associated with it?	ocity c. V	Vhat is the de-Broglie wavelength	
	(A) infinity	(B)	zero	
	(C) radio wave	(D)	X ray	
37.	Which among the following series gives visible	light?		
	(A) Lyman (C) Brooket	(B)	Balmer	
20	(C) Diacket	(D)	None	
38.	A	rcuit		
		_		
		X		
	\mathbf{B}	(B)	OP	
	(C) NAND	(D)	NOR	
39.	The number of silicon atoms per m ³ is 5 x 10^{28} . per m ³ of arsenic and 5 x 10^{20} atoms per m ³ of in $n = 1.5 \times 10^{16} \text{ m}^{-3}$	This is d dium. Ca	oped simultaneously with 5 x 10^{22} atoms alculate the number of holes, given that	
	(A) $4.54 \times 10^9 \text{m}^{-3}$	(B)	$4.95 \ge 10^{22} \text{m}^{-3}$	
	(C) $1.5 \times 10^{16} \text{m}^{-3}$	(D)	$5 \ge 10^{28} \text{m}^{-3}$	
40.	Two charges $+5\mu C$ and $-5\mu C$ are placed 5 mm as on the positive charge side along the axial line.	part. Det	termine E at a point 10 cm from centre	
	(A) $4.5 \times 10^5 \text{N/C}$	(B)	4.5 x 10 ⁵ NC	
	(C) $4.5 \times 10^{-5} \text{N/C}$	(D)	4.5 x 10 ⁻⁵ NC	
41.	If the Gaussian surface is so chosen that there are electric field is due to	e some c	sharges inside and some outside than the	
	(A) Only inside charges	(B)	Only outside charges	

(C) All the charges (D) Cannot determine

42. The following is a diagram showing the variation of E with r from centre of uniformly charge spherical shell of radius R

43. Net capacitance of 3 identical capacitor in series is 1 μ *F*. What is the net capacitance in μ *F* if connected in parallel?

(A)	3	(B)	6
(C)	9	(D)	12

44. An inductor of 5H carries a steady current of 2A. In what time if the current is made zero can a 40V self induced emf be produced in the inductor.

(A)	2s	(B)	1s
(C)	0.5s	(D)	0.25s

45. A cell of emf E and internal resistance r gives 0.5A with R=12 ohms and 0.25 with R = 25 ohms. Its internal resistance in ohms will be

(A)	0.5	(B)	1
(C)	2	(D)	3

46.

47. Two identical circular loops P and Q of radius r are placed in parallel planes with same distance of 2r. Find B at the midpoint of the axis between them if same current I flows			d in parallel planes with same axis at a them if same current I flows through	
	both l	oops.	(T)	(- ³ /2
	(A)	$\mu_0 l/2^{3/2} r$	(B)	$\mu_0 2 \frac{1}{2^{n/2}r}$
10	(C)	$\mu_0 l/4\pi r$	(D)	Cannot be determined
48.	A blo 0.8. If betwe	ck of mass 4 kg is kept on a rough horizontal a force of 19 N is applied on the block paral en the block and floor is:	surfac	he floor, then the force of friction
	(A)	19N	(B)	18 N
	(C)	16N	(D)	9.8N
49.	Curre	nt in a circuit falls steadily from 2A to 0A in	10 ms.	. Calculate L if emf induced is 200V.
	(A)	1H	(B)	2Н
	(C)	3Н	(D)	4H
50.	Self in core.	nductance of the air core inductor increases fr What is the relative permeability of the core u	om 0.0 ised?	01 mH to 10 mH on introducing an iron
	(A)	500	(B)	800
	(C)	900	(D)	1000
51.	Amor	ig the following, the most stable complex is		
	(A)	$[Fe (H_2O)_6]^{3+}$	(B)	$[Fe (NH_3)_6]^{3+}$
	(C)	$[Fe (C_2O_4)_3]^{3-}$	(D)	$[Fe (Cl)_6]^{3-}$
52.	Whicl metal	h is the correct coordination number (C.N) an atom in $[Co(NH_3)_2(H_2O)_2Cl_2]^+$?	d oxid	lation number (O.N) of the transition
	(A)	C.N=3, O.N=+1	(B)	C.N=4, O.N=+2
	(C)	C.N=6, O.N=+1	(D)	C.N=6, O.N=+3
53.	In a so	olid, oxide ions are arranged in ccp, cations A	occup	py one sixth of the tetrahedral voids and
	cation	B occupy one third of the octahedral voids.	The fo	rmula of the solid is:
	(A)	ABO_3	(B)	A ₃ BO
	(C)	$AB_{3}O$	(D)	$A_3B_3O_3$
54.	On m	ixing acetone to methanol some of the hydrog	gen bo	nds between methanol molecules break.
	Whick	h of the following statements is correct about	the ab	ove process?
	(A)	At specific composition methanol acetone	(B)	At specific composition methanol
		mixture will form minimum boiling		acetone mixture will form maximum
		azeotrope and show positive deviation		boiling azeotrope and show positive
		from Raoult's law	(-)	deviation from Raoult's law
	(C)	At specific composition methanol acetone	(D)	At specific composition methanol
		mixture will form minimum boiling		acetone mixture will form maximum
		azeotrope and show negative deviation		boiling azeotrope and show negative
	17	from Raoult's law		deviation from Raoult's law
55.	$K_{\rm H}$ va	lue for argon, carbon dioxide, formaldehyde	and me	ethane gases are $40.39, 1.67, 1.83 \times 10^{\circ}$
	and 0	(413, respectively. The correct arrangement o	f these	gases in the order of their increasing
	(A)	formaldehyde <methane<carbon dioxide<argon< td=""><td>(B)</td><td>formaldehyde< carbon dioxide <methane<argon< td=""></methane<argon<></td></argon<></methane<carbon 	(B)	formaldehyde< carbon dioxide <methane<argon< td=""></methane<argon<>
	(C)	argon <carbon dioxide<<br="">methane<formaldehyde< td=""><td>(D)</td><td>argon <methane <carbon="" dioxide<br=""><formaldehyde< td=""></formaldehyde<></methane></td></formaldehyde<></carbon>	(D)	argon <methane <carbon="" dioxide<br=""><formaldehyde< td=""></formaldehyde<></methane>
56.	The n nitrob	umber of faradays of electricity required for	electro	lytic conversion of the mole of
	(A)	3F	(B)	4F
	(C)	6F	(D)	5F

57.	The p	ositive value of the standard electrode potent	tial of .	Ag^{+}/Ag indicates that:
	(A)	This redox couple is a stronger reducing agent than H^+/H_2 couple	(B)	This redox couple is a stronger oxidizing agent than H^+/H_0 couple
	(C)	Ag can displace H_2 from acid	(D)	Ag can displace H_2 from base
58.	Milk reacti	is refrigerated in order to slow the rate of dec on rate is due to:	compos	sition by bacterial action. The decrease in
	(A)	A decrease in surface area	(B)	A decrease in \triangle H for the reaction
	(C)	A decrease in the fraction of particles	(D)	The introduction of an alternative
		possessing sufficient energy		pathway with greater activation energy.
59.	Whic	h of the following statements is not correct?	(T)	
	(A)	The rate of a reaction decreases with passage of time as concentration of	(B)	The instantaneous rate a reaction is same at any time during the reaction
		reactants decrease		
	(C)	For a zero order reaction the	(D)	The rate of a reaction decreases with
		concentration of reactants remains changed with passage of time		increase in concentration of reactant (s)
60.	Whic	h of the following gases shows the lowest ad	sorptic	on per gram of charcoal? The critical
	tempe	eratures are given in parenthesis:	•	
	(A)	$H_2(33K)$	(B)	CH ₄ (190K)
	(C)	$SO_2(630K)$	(D)	$CO_2(304K)$
61.	Freun	idlich adsorption isotherm is given by the exp nents are false?	pressio	n x/m= $kp^{1/n}$. Which of the following
	i.	When $1/n=0$, the adsorption is independent	ndent o	of pressure.
	ii	. When n=0, the plot of x/m vs p graph	is a lir	ne parallel to x axis.
	ii	i. When 1/n=0, the adsorption is directly	v propo	ortional to pressure.
	iv	When n=0, plot of x/m vs p is a curve		
	(A)	1 and 11	(B)	11 and 1V
67	(C) In the	and m	(D)	an arc raise
02.	the fo	allowing statements are true?	queou	s solution of socium chioride, which of
	i.	Δ G ⁰ for the overall reaction is positiv	ve	
	ii	ΔG^0 for the overall reaction is negative.	ve	
	ii	i. E^0 for the overall reaction is positive		
	iv	E^0 for the overall reaction is negative		
	(A)	i and iv	(B)	i and iii
	(C)	11 and 111	(D)	111 and 1V
63.	Whic	h of the following pairs of ions are isoelectro	nic an	d isostructural ?
	(A)	NO_2^{-1} and NO_3^{-1}	(B)	ClO_3 and ICl_4
<i>с</i> н	(C)	XeO ₃ and PCI ₃	(D)	CIO_3 and SO_3
64.	Whic	h of the following hydrides is the strongest re	ducing	g agent?
	(A)		(B)	PH3 Shu
(=	(C) Const	ASII3	(D)	50113
63.	Consi	Ider the reactions, $7n + Conc.$ HNO: (bot) \longrightarrow $7n$ (b	JO.)	$+ X + H_{\bullet}O$
	1. ii	$Zn + dil_{1} HNO_{2} (cold) \longrightarrow Zn (l)$	NO_{2}	$+ Y + H_2O$
	11	Compounds X and Y are, respectively	,	
	(A)	N ₂ O, NO	(B)	NO_2 , NO_2
	(C)	N ₂ , N ₂ O	(D)	NO ₂ , NO

7 PCB C

66.	When $KMnO_4$ acts as an oxidizing agent in weakly alkaline medium, the oxidation number of manganese decreases by:				
	(A)	1	(B)	2	
	(C)	3	(D)	5	
67.	Acidit	fied potassium dichromate solution turns gree	n whe	n Na ₂ SO ₃ is added to it due to the	
	(Δ)	CrSO	(\mathbf{R})	$Cr_2(SO_1)_2$	
	(Λ)	CrO_{4}^{2-}	(\mathbf{D})	$Cr_2(SO_4)_3$	
60		electron configurations of Cr^{2+} Mr^{2+} Es^{2+}	(D)	d^4 and d^5 d^6 and d^7 magnitudes	
08.	Which	to ne of the following complexes will exhibit ers of $Cr=24$ Mn=25 Fe=26 Co=27)	minin	num paramagnetic behavior? (atomic	
	(A)	$[Cr(H_2O)_6]^{2+}$	(B)	$[Mn(H_2O)_6]^{2+}$	
	(C)	$[Fe(H_2O)_6]^{2+}$	(D)	$[Co(H_2O)_6]^{2+}$	
69.	When	2-Bromopentane is heated with potassium et	hoxide	e in ethanol, the major product obtained	
	1S:	2 Eth annual to a s	(D)	Dané 1 ana	
	(A)	2-Ethoxypentane	(B)	Pent-1-ene	
	(C)	Cis-Pent-2-ene	(D)	Trans-Pent-2-ene	
70.	Which	n of the following undergoes nucleophilic sub	stituti	on exclusively by S _N ¹ mechnism?	
	(A)	Chloroethane	(B)	Isopropyl chloride	
	(C)	Chlorobenzene	(D)	Benzyl chloride	
71.	The m	umber of possible stereoisomers for CH ₃ CH=	CHCH	H_2 CH(Br)CH ₃ is:	
	(A)	8	(B)	2	
	(C)	4	(D)	6	
72.	2-Met	hoxy-2-methylpropane on heating with HI pr	oduce	S:	
	(A)	Methanol and sec-propyl iodide	(B)	Methyl jodide and tert-butyl alcohol	
	(C)	Methyl iodide and isobutene	(D)	Methanol and tet-butyl jodide	
73	The le	east acidic compound among the following is	(-)		
15.	(Δ)	o-Nitronhenol	(R)	m-Nitrophenol	
	$(\mathbf{\Gamma})$	n-Nitrophenol	(\mathbf{D})	Phenol	
71	(C)	rang C. H. an reductive exemplying gives on	(D)	de with formula C II O and a latena	
/4.	The la	etone is:	aldeny	de with formula $C_3 \Pi_6 O$ and a ketone.	
	(Λ)	2 Butanone	(\mathbf{P})	2 Dontonono	
	(\mathbf{A})	2-Dutatione 2 Dentenone	(\mathbf{D})	2-1 childholic	
76	(C) TI				
/5.	The increasing order of the rate of addition of HCN to the compounds 1) Formaldehyde 11)				
	Aceto	ne iii) Acetophenone iv) benzophenone			
	(A)	1<11 < 111< 1V	(B)	1V < 11 < 111 < 1	
	(C)	1V<111< 11< 1	(D)	1V< 1< 11< 111	
76.	The ca	arboxylic acid that does not undergo Hell-Vo	hlard-2	Zelinsky reaction is:	
	(A)	CH ₃ COOH	(B)	(CH ₃) ₂ CHCOOH	
	(C)	CH ₃ CH ₂ CH ₂ COOH	(D)	(CH ₃) ₃ CCOOH	
77.		NaNO ₂ /HCl P/Br ₂ NH ₃			
	C_2H_5N	$NH_2 \longrightarrow X \longrightarrow Y \longrightarrow$	Ζ		
		(excess)			
	In the	above sequence, Z is:			
	(A)	cyanoethane	(B)	ethanamide	
	(C)	methanamine	(D)	Ethanamine	
78.	The at	ttachment of which of the following group at	para p	osition in aniline will raise the K_b	
	(Δ)	-SO ₂ H	(\mathbf{R})	-OH	
	(C)	_F	(D)	-Br	
	(\mathbf{U})	1	(D)	ות	

79.	Whicl	h of the following is an example of globular p	orotein	?
	(A)	myosin	(B)	collagen
	(C)	keratin	(D)	haemoglobin
80.	Whicl	h one of the following is synthesized in our b	ody by	/ sun rays?
	(A)	Vitamin D	(B)	Vitamin B
	(C)	Vitamin K	(D)	Vitamin A
81.	Capro	lactum is the is the starting material for the s	ynthes	is of
	(A)	Nylon-6	(B)	Nylon6,6
	(C)	Terylene	(D)	Nylon 10
82.	The sp	pecies which can serve as an initiator for cation	onic po	olymerization is
	(A)	Lithium aluminium hydride	(B)	Nitric acid
	(C)	Aluminium chloride	(D)	BuLi
83.	Aspiri	in is an:		
	(A)	analgesic	(B)	antipyretic
	(C)	antimalarial	(D)	Both analgesic and antipyretic
84.	The e	quivalent mass of iron in the reaction 2Fe + 3	$Cl_2 \rightarrow$	• 2FeCl ₃ is:
	(A)	Half of its atomic mass	(B)	One third of its atomic mass
	(Ć)	Same as atomic mass	(D)	One fourth of its atomic mass
85.	Whiel	h of the following sets of quantum numbers is	s corre	ect for an electron in 4f subshell?
	(A)	n=4, l=3, m=4, s=+1/2	(B)	n=4, l=3, m=-4, s=-1/2
	(C)	n=4, l=3, m=+1, s=+1/2	(D)	n=3, l=2, m=-2, s=+1/2
86.	The c	orrect sequence of atomic radii is:		
	(A)	Na>Mg>Al>Si	(B)	Al>Si>Na>Mg
	(C)	Si>Al>Mg>Na	(D)	Si>Al>Na>Mg
87.	In wh	ich of the following, the bond angle around the	he cen	tral atom is maximum?
	(A)	NH ₃	(B)	$\mathrm{NH_4}^+$
	(C)	PCl ₃	(D)	SCl_2
88.	Whicl	h of the following molecule does not exist		
	(A)	NF ₃	(B)	NF ₅
	(C)	PF ₅	(D)	N_2H_4
89.	If heli	um is allowed to expand in vacuum, it libera	tes hea	at because
	(A)	It is an inert gas	(B)	It is an ideal gas
	(C)	Its critical temp. is low	(D)	It is a light gas
90.	i) H ₂ (g) + 1/2O ₂ (g) \rightarrow H ₂ O(I)+ x KJ ii) H ₂ (g) +	$1/2O_{2}$	$(g) \rightarrow H_2O(g) + y KJ$; For the given two
	reaction	ons,		
	(A)	x>y	(B)	x <y< td=""></y<>
	(C)	x=y	(D)	x+y=0
91.	If the	bond dissociation energies of XY, X_2 , Y_2 (all	diato	mic molecules) are in the ratio 1:1:0.5,
	respec	ctively and $\Delta_{\rm f}$ H of XY is -200KJmol ⁻¹ , the bo	nd dise	sociation energy of X_2 will be:
	(A)	400 KJmol ²	(B)	300 KJmol ²
	(C)	200 KJmol	(D)	
92.	What	will be the correct order of vapour pressure of	of wate	er, ethanol and ether at 30°C? Given that
	among	g these compounds water has maximum boili	ng poi	Int and ether has minimum boiling point.
	(A)	Water <ether<ether< td=""><td>(B)</td><td>Water<ethanol<ether< td=""></ethanol<ether<></td></ether<ether<>	(B)	Water <ethanol<ether< td=""></ethanol<ether<>
02	(C)		(D)	
93.	w hich	n of the following will occur if a 0.1M solution	on of a	weak acto is diluted to 0.01M at
	(Δ)	$[H^+]$ will decrease to 0.001M	(R)	nH will decrease
	(\mathbf{C})	Percentage ionization will increase	(D)	K will increase
	(\mathbf{U})	i oroniugo ionization win morease	(1)	

94.	Which of the following species involves the trans	fer of 5	N _A electrons per mole of it ?
	(A) $MnO_4^{2-} \rightarrow MnO_4^{}$	(B)	$MnO_4 \rightarrow Mn^{2+}$
	(C) $MnO_4 \rightarrow MnO_2$	(D)	$CrO_4^{2-} \rightarrow Cr^{3+}$
95.	30-volume hyderogen peroxide means:		
	(A) 30% H ₂ O ₂ by volume	(B)	$30g$ of H_2O_2 solution containing 1g of it
	(C) 1 cm ³ of solution liberates 30 cm ³ of O_2	(D)	30 cm^3 of the solution contains one
	gas at STP		mole of H_2O_2
96.	The correct sequence of covalent character is repr	esentec	l by:
	(A) LiCl <nacl<becl<sub>2</nacl<becl<sub>	(B)	BeCl ₂ <licl<nacl< td=""></licl<nacl<>
	(C) NaCl $<$ LiCl $<$ BeCl ₂	(D)	BeCl ₂ <nacl<licl< td=""></nacl<licl<>
97.	Which of the following is known as pyrene?		
	(A) CCl_4	(B)	CS ₂
	(C) S ₂ Cl ₂	(D)	Solid CO ₂
98	The most stable carbocation amongst the followin	g is.	-
201	(A) $(CH_2)_2CH^+$	(B)	Ph_2C^+
	(C) $CH_2CH_2^+$	(D)	$CH_2 = CH - CH_2^+$
99	The molecule that will have dipole moment is:	(-)	
<i>))</i> .	(A) 22 -Dimethylpropane	(B)	Cis-2-Butene
	(C) Trans-2-Butene	(\mathbf{D})	2 2 3 3-Tetramethylbutane
100	Of the five isomeric havanes, the isomer which ca	n give	two monochloringted compound is:
100.	(A) 2-Methylpentane	(\mathbf{R})	2 2-Dimethylbutane
	(C) = 2 3-Dimethylbutane	(\mathbf{D})	n-Heyane
101	Which of the following colla in glosts show to time	(D)	II-HEXAIIC
101.	(A) Vulue vagada	(D)	Siava takas
	(A) Aylem vessels	(B)	Sieve tubes
100	(C) Meristem	(D)	Cork cells
102.	Father of taxonomy is		T '
	(A) John Ray	(B)	Linnaeus
	(C) Aristotle	(D)	Lamark
103.	Which of the following has more characters in con	mmon	~
	(A) Species	(B)	Genus
	(C) Class	(D)	Division
104.	Riccia is a liverwort as it		
	(A) produces liver diseases	(B)	is present in liver
	(C) cures liver diseases	(D)	is like a flat lobed thallus
105.	Gymnosperms are characterized by		
	(A) Large leaves	(B)	Ciliated sperms
	(C) Naked ovules	(D)	Scale leaves
106.	A root parasite is		
	(A) Cuscuta	(B)	Striga
	(C) Brassica	Ď	loranthus
107	Roots that grow from any part of the plant body of	ther the	an the radicles are
107.	(A) Adventitious roots	(B)	Tan roots
	(C) Modified roots	(D)	Aerial roots
109	Parallal vanation is a characteristic of	(1)	10100
100.	(Λ) Deresitic plants	(D)	Veronhytic plants
	(C) Legumes	(D) (D)	Grosses
	(C) Legumes	(D)	0105565

109.	A bisexual flower which never opens in its life	span is ca	lled
	(A) Cleistogamus	(B)	Heterogamus
	(C) Homogamus	(D)	Dichogamus
110.	Quiescent centre is located in		
	(A) Shoot apex	(B)	Root apex
	(C) Leaf apex	(D)	Bud apex
111.	Casparian strips occur in the cells of		
	(A) Epidermis	(B)	Exodermis
	(C) Endodermis	(D)	Hypodermis
112.	Vascular bundles are absent in		
	(A) Monocots	(B)	Dicots
	(C) Gymnosperms	(D)	Pteridophytes
113.	Aerenchyma is derived from		
	(A) Parenchyma	(B)	Sclerenchyma
	(C) Phloem	(D)	Xylem
114.	Vascular bundle having cambium is		
	(A) closed	(B)	open
	(C) conjoint	(D)	collateral
115.	What do you eat in coconut		
	(A) Embryo	(B)	Mesocarp
	(C) Entire seed	(D)	Fruit wall
116.	Phyllode is a modification of		
	(A) Flower	(B)	Bud
	(C) Root	(D)	Petiole
117.	Fingermillet is		
	(A) Eleusine	(B)	Setaria
	(C) Pennisetum	(D)	Sorghum
118.	Microsporophyll of Cycas is equivalent to	of	angiosperms
	(A) Sepal	(B)	Stamen
	(C) Ovary	(D)	Ovule
119.	Jackfruit is an example of		
	(A) Multiple fruit	(B)	Aggregate fruit
	(C) Simple fruit	(D)	None of these
120.	Anther wall in angiosperms contain how many	wall layer	ſS
	(A) 3	(B)	4
	(C) 5	(D)	6
121.	If an endosperm cell of angiosperm has 36 chro	mosomes	, the root cell should have
	(A) 18	(B)	16
	(C) 4	(D)	24
122.	Amino acid synthetase enzyme is activated by		
	(A) Mg	(B)	Cu
	(C) Zn	(D)	Fe
123.	Number of net gain ATP in aerobic respiration	is	
	(A) 2	(B)	42
	(C) 38	(D)	41
124.	One glucose molecule partially oxidized in ana	erobic res	piration produces
	(A) 30 ATPs	(B)	38 ATPs
	(C) 2 ATPs	(D)	15 ATPs

125.	In for	est ecosystem green plants are		
	(A)	Primary consumers	(B)	Primary producers
	(C)	Decomposers	(D)	None of these
126.	The l	argest cell in the embryo sac is		
	(A)	Central cell	(B)	Egg
	(C)	Synergids	(D)	None of these
127.	Doub	le membrane is absent in		
	(A)	Mitochondria	(B)	Chloroplast
	(C)	Peroxisome	(D)	Golgi body
128	DNA	content is doubled in stage of	f cell divisio	n C
120.	(\mathbf{A})	Pronhase	(R)	Metanhase
	(\mathbf{C})	G, phase	(D)	S- phase
120		of individuals of different species is	allad	5 phuse
129.	A git (A)	Population	(P)	Community
	(\mathbf{A})	Biome	(D)	None of these
120	(C) D	Diome	(D)	None of these
130.	Purin	A dening and Comming	(D)	Coursing and Costa sing
	(A)	Adenine and Guanine	(B)	Guanine and Cytosine
	(C)	I nymine and Cytocine	(D)	Adenine and Thymine
131.	The p	bigment which is absent in chloroplast is	·	
	(A)	Chlorophyll 'a'	(B)	Chlorophyll 'b'
	(C)	Xanthphyll	(D)	Anthocyanine
132.	Rate	of transpiration is measured by		
	(A)	Manometer	(B)	Potometer
	(C)	Auxanometer	(D)	None of these
133.	The s	site of primary photochemical reaction is		
	(A)	Stroma	(B)	Grana
	(C)	Periplast cavity	(D)	Inner layer
134.	Fathe	er of green revolution in India is		
	(A)	N. Borlaug	(B)	K.C. Mehta
	(C)	M.S. Swaminathan	(D)	None of these
135.	Plant	s which grow in shade are		
	(A)	Sciophytes	(B)	Heliophytes
	(C)	Halophytes	(D)	Psamophytes
136.	The a	mount of living material in different trop	phic levels i	s called
	(A)	Standing crop	(B)	Standing state
	(C)	Dry weight	(D)	Biomass
137	In no	nd ecosystem pyramid of number is alway	avs	
137.	(A)	Straight	(B)	Linear
	(C)	Upright	(D)	Inverted
138	Vere	tation dominated by shrubs with few tall	trees is cal	led
156.	(A)	Serule	(B)	Marsh
	(\mathbf{A})	Grassland	(D)	Forest
120	(C) T-t-1		(D)	Torest
139.	1 otal	energy produced during photosynthesis	is called	Nathiamaga
	(A)	Not primary production	(D)	Gross primery production
1.40	(U) C		(D)	Gross primary production
140.	Seco	ndary producers of the ecosystem are		D.:
	(A)	Green plants	(B)	Primary consumers
	(C)	1 op consumers	(D)	inone of these

141.	The c	hemical knives of DNA are		
	(A)	Ligases	(B)	Polymerases
	(C)	Endonucleases	(D)	Transcriptases
142.	The Ir	ndian variety of rice patented by an American	n comp	bany is
	(A)	IR 8	(B)	Jaya
	(C)	Sona masoori	(D)	Basmati
143	Pusa I	Komal is a variety of		
115.	(A)	Cowpea	(B)	Wheat
	(C)	Brassica	(D)	Chilli
144.	The st	talk of the ovule that attaches it to the placen	ta in ar	ngiosperms is
	(A)	Pedicel	(B)	Funiculus
	(C)	Integument	(D)	Hilum
145.	Vallis	neria usually favours		
	(A)	Zoophily	(B)	Entomophily
	(C)	Hydrophily	(D)	Anemophily
146.	An ex	ample of single cell protein is		
	(A)	Spirulina	(B)	Volvox
	(C)	Spirogyra	(D)	Chlamydomonas
147	Whiel	h forest is named as the "Lungs of the planet"	"? ``?	5
1	(A)	Western ghats	(B)	Eastern ghats
	(C)	Amazon rain forest	(D)	Sahara desert
148.	The e	arth summit held at Rio de Janeiro was in the	e year	
	(A)	1986	(B)	1902
	(C)	1992	(D)	1996
149.	Lignit	fied cell wall occurs in		
	(A)	Epidermal cells	(B)	Cambial cells
	(C)	Phloem cells	(D)	Xylem cells
150.	A slid	e of TS dicot stem shows		
	(A)	Scattered vascular bundles	(B)	Vascular bundles arranged in a ring
	(C)	Radial vascular bundles	(D)	Closed vascular bundles
151.	Once	formed, red blood cells normally have an ave	erage l	ife span of
	(A)	30 days	(B)	60 days
1.50	(C) 11	90 days	(D)	120 days
152.	Hepar	In, an anticoagulant is manufactured by	(D)	Most colla
	(A)	Plasma cells Lymphocytes	(B) (D)	Masi cells Blood platelets
152	(C) Eunot	Lymphocyces	(D)	Blood placets
133.	(Δ)	Provide support only	(B)	Provide support and production of
	(A)	Trovide support only	(D)	RBC only
	(C)	Provide support and production of WBC	(D)	Provide support and production of
	(-)	only	(-)	RBC and WBC
154.	Binoc	ular vision is seen in		
-	(A)	Man	(B)	Rabbit
	(C)	Rat	(D)	Guinea pig
155.	Spern	natogenesis is influenced by		
	(Â)	Testosterone	(B)	Luteinizing hormone
	(C)	FSH	(D)	All of these

156.	The type of respiration found in man is							
	(A)	Cutaneous	(B)	Subcutaneous				
	(C)	Pulmonary	(D)	Diffusion				
157.	What	happens if RBCs are put in a hypertonic solu	tion					
	(A)	They will contract and loose water	(B)	They will swell up and burst				
	(C)	They will show clumping	(D)	None of these				
158.	In mar	n, urea is formed in the						
	(A)	Body tissues	(B)	Kidney				
	(C)	Liver	(D)	Spleen				
159.	Which	n of the following stood erect first						
	(A)	Java man	(B)	Peking man				
	(C)	Australopithecus	(D)	Cro-Magnon man				
160	The fi	rst autotrophs on the earth were	Ì,					
1001	(A)	Viruses	(B)	Bacteria				
	(C)	Green algae	(D)	Blue green algae				
161	The 'I	Ise and disuse' principle of evolution was pro	nnsec	t by				
101.	(A)	Lamarck	(B)	Weisman				
	(\mathbf{C})	Hugo de Vries	(D)	Charles Darwin				
162	The fo	sllowing is an example of inhorn error in met	abolis	m				
102.	(Δ)	Spina bifida	(\mathbf{R})	Phenylketonuria				
	(\mathbf{C})	Phocomelia	(D)	Mongolism				
162	(e) Idantii	al twing develop from	(2)	in ongoing in the second se				
105.	(Λ)	One oxum and two sperms	(\mathbf{B})	Two ova and one sperm				
	(\mathbf{A})	Two ova and two sperms	(\mathbf{D})	None of these				
164		Two ova and two sperms	(D)	of mitagia				
164.	1 ne cr	Promosomes are best studied at the following	stage	OI MILOSIS Matanhaga				
	(A)	Anophase	(B)	Telephase				
165	(C)		(D)	Telophase				
165.	A mor	nosomic individual can be mathematically rep	oresen	ted as				
	(A)	2n-2	(B)	2n+1				
	(C)	2n-1	(D)	20-4				
166.	In a fr	uit fly, a white eyed XXY female is mated to	a red	eyed XY male. The female progeny				
	(A)	All red eved	(B)	All white eved				
	(\mathbf{C})	Mainly red eved with a few white eved	(D)	Mainly white eved with a few red eved				
167	(\mathbf{c})	f the following is a say linked trait in humans	(2)					
107.	(Λ)	Curly bairs	(P)	Sickle call anomia				
	(\mathbf{A})	Colour blindness	(\mathbf{D})	Down's syndrome				
1(0	(C)	colour billioness	(D)	Down's syndrome				
168.	First e	Nironhoro	(\mathbf{P})	U.C. Khorene				
	(\mathbf{A})	Wetcon	(B)	H.G. Knorana				
	(C)	watson	(D)	F.H.C. Crick				
169.	Protein	n coat virus is known as						
	(A)	Capsid	(B)	Capsomere				
	(C)	VIIION	(D)	v iroid				
170.	Chemi	ically a gene is	(—)					
	(A)	Nucleoprotein	(B)	Polypeptide				
	(C)	Ribonucleic acid	(D)	Polynucleotide				

171.	Apes	differ from man in having		
	(Å)	Arms shorter than legs	(B)	Legs shorter than arms
	(C)	Length of arms and legs is similar	(D)	A tail
172.	The d	lisease transmitted through sexual contact is		
	(A)	Measles	(B)	Syphilis
	(C)	Polio	(D)	Small pox
173.	Нуре	rsensitivity of tissue occurs in		
	(A)	Cancer	(B)	Malaria
	(C)	Allergy	(D)	Small pox
174.	The s	porozoites of malarial parasites are stored in		
	(A)	Liver of man	(B)	Blood of man
	(C)	Stomach of females anopheles	(D)	Salivary glands of female anopheles
175.	The f	ollowing plant has male and female reproduc	tive pa	arts in the same flower
	(A)	Papaya	(B)	Datepalm
	(C)	Cycas	(D)	Datura
176.	Opiu	m is derived from		
	(A)	Latex of Papaver somniferum	(B)	Seeds of Papaver somniferum
	(C)	Seeds of <i>Coffee arabica</i>	(D)	Leaves of datura
177.	Penic	cillium was first isolated from		
	(A)	Penicillium nigricans	(B)	Penicillium chrysogenum
	(C)	Penicillium notatum	(D)	Penicillum griseofulvum
178.	Whic	h of the following is an implant?		
	(A)	Blood diasyser	(B)	Heart valve
	(C)	Artificial limbs	(D)	Oxygenator
179.	Chem	nical nature of jute fibre is		
	(A)	Lignin	(B)	Cellulose
	(C)	Pectin	(D)	Suberin
180.	The c	conversion of molecular nitrogen to ammonia	is kno	wn as
	(A)	Nitrification	(B)	Denitrification
	(C)	Ammonification	(D)	Nitrogen fixation
181.	Cocai	ine is a powerful stimulant of		
	(A)	Heart beat	(B)	Central nervous system
	(C)	Muscles	(D)	Breathing
182.	Diagr	nosis of typhoid is done by		
	(A)	ESR	(B)	ELISA test
	(C)	DLC	(D)	WIDAL test
183.	Scien	tific study of human population is called		
	(A)	Demography	(B)	Geography
	(C)	Anthropology	(D)	Biogeography
184.	Vineg	gar is obtained due to biological activity of	(D)	T / 1 '11
	(A)	Acetobactor	(B)	
105	(C)		(D)	Anabaena
185.	The f	ollowing disease involves change in chromos	ome n	umber
	(A)	Colour blindness	(B)	Haemophilia
107	(U) D'		(D)	Jaunaice
186.	King	worm disease is caused by	(\mathbf{D})	
	(A)	Annella A fungue	(B)	Heimintnes
	(C)	A rungus	(D)	A bacterium

187.	The o (A)	pen type of circulatory system is found in Nereis Prawn	(B) (D)	Octopus Frog
188.	(C) The p (A)	rocess of translation is Ribosome synthesis	(B)	Protein synthesis
100	(C)	DNA synthesis	(D)	RNA synthesis
189.	Dengu (A)	Culex	(B)	Male anopheles
	(C)	Aedes	(D)	Female anopheles
190.	Young	g of cockroach is called	(D)	Numph
	(A) (C)	Maggot	(D)	Juvenile
191.	Numb	per of mitotic divisions required to produce 12	28 cell	s from a single cell is
	(A)	7	(B)	14
102	(C) Distar	10 10	(D) NA is	52
192.	(A)	2.4 A°	(B)	3.4 A°
	(C)	24 A°	(D)	34 A°
193.	In add	lition to the nucleus, DNA also occurs in		
	(A)	Mitochondria	(B)	Lysosome
104	(C)	Ribosome	(D)	Golgi appratus
194.	(A)	Bacteria	(B)	Diatoms
	(C)	Cyanobacteria	(D)	Green algae
195.	The v	ector for causing sleeping sickness in man is		
	(\mathbf{A})	House fly	(B)	Tse-Tse fly
107	(C) Classe	Butterfly	(D)	Mosquito
196.	(A)	Saffranine	(B)	Acetocarmine
	(C)	Sciff's reagent	(D)	Ethanol
197.	The u	niversal recipient blood group is		
	(A)	A	(B)	AB
100	(C)		(D)	В
198.	Arsen	Ic pollutant in drinking water causes	(\mathbf{R})	Paralysis
	(\mathbf{C})	Kidney diseases	(D)	Cancer
199.	In the	colony of <i>Apis indica</i> , the one formed by par	theno	genesis is
	(A)	Queen	(B)	Worker
	(C)	Drone	(D)	Both B and C
200.	The p	ollutant responsible for chromosomal mutatio	ons in (\mathbf{D})	man is
	(A) (C)	Lead Arsenic	(D) (B)	Manganese
	(\mathbf{U})		(\mathbf{D})	wiereur y

Sr.	Question		
No.			
1.	Among the following, the most stable complex is $(1) = \sum_{i=1}^{n} (1) \sum_{j=1}^{n} (1) \sum_{i=1}^{n} (1) \sum_{i=1$		
	(A) [Fe (H ₂ O) ₆] ³	(B)	$[Fe (NH_3)_6]^{5}$
_	(C) [Fe $(C_2O_4)_3$]	(D)	$[Fe (Cl)_6]^3$
2.	Which is the correct coordination number (C.N) a metal atom in $[Co(NH_3)_2(H_2O)_2Cl_2]^+$?	ind oxic	lation number (O.N) of the transition
	(A) $C.N=3, O.N=+1$	(B)	C.N=4, O.N=+2
	(C) $C.N=6, O.N=+1$	(D)	C.N=6, O.N=+3
3.	In a solid, oxide ions are arranged in ccp, cations cation B occupy one third of the octahedral voids.	A occuj . The fo	py one sixth of the tetrahedral voids and rmula of the solid is:
	$(A) ABO_3$ $(C) ABO$	(B)	
4	$(C) AD_{3}O$	(D)	$A_3D_3O_3$
4.	Which of the following statements is correct about	it the ab	nds between methanol molecules break.
	(A) At specific composition methanol acetone	(B)	At specific composition methanol
	mixture will form minimum boiling		bailing agastrong and show positive
	from Baoult's law		deviation from Racult's law
	(C) At specific composition methanol acetone	(\mathbf{D})	At specific composition methanol
	mixture will form minimum boiling	(D)	acetone mixture will form maximum
	azeotrope and show negative deviation		boiling azeotrope and show negative
	from Raoult's law		deviation from Raoult's law
5.	$K_{\rm H}$ value for argon, carbon dioxide, formaldehydd and 0.413, respectively. The correct arrangement solubility is:	e and m of these	ethane gases are 40.39, 1.67, 1.83 X 10 ⁻⁵ e gases in the order of their increasing
	(A) formaldehyde <methane<carbon< th=""><th>(B)</th><th>formaldehyde< carbon dioxide</th></methane<carbon<>	(B)	formaldehyde< carbon dioxide
	dioxide <argon< td=""><td></td><td><methane<argon< td=""></methane<argon<></td></argon<>		<methane<argon< td=""></methane<argon<>
	(C) argon <carbon dioxide<<="" td=""><td>(D)</td><td>argon <methane <carbon="" dioxide<="" td=""></methane></td></carbon>	(D)	argon <methane <carbon="" dioxide<="" td=""></methane>
	methane <formaldehyde< td=""><td></td><td><formaldehyde< td=""></formaldehyde<></td></formaldehyde<>		<formaldehyde< td=""></formaldehyde<>
6.	The number of faradays of electricity required for nitrobenzene to aniline is:	· electro	lytic conversion of the mole of
	(A) 3F	(B)	4F
	(C) 6F	(D)	5F
7.	The positive value of the standard electrode poten	tial of A	Ag ⁺ /Ag indicates that:
	(A) This redox couple is a stronger reducing agent than H^+/H_2 couple	(B)	This redox couple is a stronger oxidizing agent than H^+/H_2 couple
	(C) Ag can displace H_2 from acid	(D)	Ag can displace H_2 from base
8.	Milk is refrigerated in order to slow the rate of de reaction rate is due to:	compos	sition by bacterial action. The decrease in
	(A) A decrease in surface area	(B)	A decrease in \triangle H for the reaction
	(C) A decrease in the fraction of particles	(D)	The introduction of an alternative
	possessing sufficient energy		pathway with greater activation energy.
9.	Which of the following statements is not correct?		
	(A) The rate of a reaction decreases with	(B)	The instantaneous rate a reaction is
	passage of time as concentration of		same at any time during the reaction
	reactants decrease		
	(C) For a zero order reaction the concentration of reactants remains	(D)	The rate of a reaction decreases with increase in concentration of reactant (s)
	changed with passage of time		

10.	Which of the following gases shows the lowest adsorption per gram of charcoal? The critical			
	tempe	ratures are given in parentnesis:	(D)	
	(A)	$H_2(33K)$	(B)	$CH_4(190K)$
	(C)	$SO_2(630K)$	(D)	$CO_2(304K)$
11.	Freun statem	dlich adsorption isotherm is given by the exp. nents are false?	ressio	$n x/m = kp^{1/n}$. Which of the following
	i.	When $1/n=0$, the adsorption is indepen	dent o	f pressure.
	ii.	When n=0, the plot of x/m vs p graph i	s a lin	e parallel to x axis.
	iii	When 1/n=0, the adsorption is directly	propo	rtional to pressure.
	iv	When $n=0$, plot of x/m vs p is a curve		_
	(A)	i and ii	(B)	ii and iv
	(C)	i and iii	(D)	all are false
12.	In the	extraction of chlorine by electrolysis of an ac	queous	s solution of sodium chloride, which of
	the fo	llowing statements are true?	-	
	i.	ΔG^0 for the overall reaction is positiv	e	
	ii.	ΔG^0 for the overall reaction is negative	ve	
	iii	E^0 for the overall reaction is positive		
	iv	E^0 for the overall reaction is negative		
	(A)	i and iv	(B)	i and iii
	(C)	ii and iii	(D)	iii and iv
13.	Which	n of the following pairs of ions are isoelectror	nic and	l isostructural ?
	(A)	NO_2^+ and NO_3^-	(B)	ClO_3 and ICl_4
	(C)	XeO_3^{2-} and PCl_3	(D)	ClO_3^- and SO_3^{2-}
14.	Which	n of the following hydrides is the strongest re-	ducing	g agent?
	(A)	NH ₃	(B)	PH ₃
	(C)	AsH ₃	(D)	SbH ₃
15.	Consi	der the reactions,		
	i.	$Zn + Conc. HNO_3 (hot) \longrightarrow Zn (N)$	$(O_3)_2 +$	$-X + H_2O$
	ii.	$Zn + dil. HNO_3 (cold) \longrightarrow Zn (N)$	$IO_3)_2$ -	$+Y + H_2O$
	()	Compounds X and Y are, respectively		
	(A)	N_2O, NO	(B)	NO_2, NO_2
	(C)	N_2, N_2O	(D)	NO_2 , NO
16.	When	KMnO ₄ acts as an oxidizing agent in weakly	alkali	ne medium, the oxidation number of
	manga	anese decreases by:		
	(A)		(B)	2
	(C)	3	(D)	5
17.	Acidit	fied potassium dichromate solution turns gree	en whe	In Na_2SO_3 is added to it due to the
	forma	tion of:		
	(A)	CrSO_4	(B)	$Cr_2(SO_4)_3$
	(C)	CrO_4^2	(D)	$Cr_2(SO_3)_3$
18.	The d	-electron configurations of Cr ²⁺ , Mn ²⁺ , Fe ²⁺ and	nd Co ²	are d ⁻ , d ⁻ , d ^o and d ['] , respectively.
	Which	n one of the following complexes will exhibit	minin	num paramagnetic behavior? (atomic
	numb	ers of Cr=24, Mn=25, Fe=26, Co=27)		$D ((U)) ^{2+}$
	(A)	$[\operatorname{Cr}(\operatorname{H}_2\operatorname{O})_6]^{2^+}$	(B)	$[Mn(H_2O)_6]^{2+}$
	(C)	$[Fe(H_2O)_6]^2$	(D)	$[Co(H_2O)_6]^{-1}$
19.	When	2-Bromopentane is heated with potassium et	hoxid	e in ethanol, the major product obtained
	1S:			D (1
	(A)	2-Ethoxypentane	(B)	Pent-1-ene
	(C)	Cis-Pent-2-ene	(D)	Trans-Pent-2-ene

2 PCB D

20.	Which of the following undergoes nucleophilic substitution exclusively by S_N^{-1} mechnism?				
	(A) Chloroethane	(H	B) Is	sopropyl chloride	
	(C) Chlorobenzene	(I)) B	enzyl chloride	
21.	The number of possible	stereoisomers for CH ₃ CH=CH	ICH ₂ C	CH(Br)CH ₃ is:	
	(A) 8	(H	B) 2		
	(C) 4	(I	D) 6		
22.	2-Methoxy-2-methylpro	opane on heating with HI prod	uces:		
	(A) Methanol and se	c-propyl iodide (H	B) M	fethyl iodide and tert-butyl alcohol	
	(C) Methyl iodide ar	nd isobutene (I	D) M	Iethanol and tet-butyl iodide	
23.	The least acidic compound	and among the following is:			
	(A) o-Nitrophenol	(H	B) m	n-Nitrophenol	
	(C) p-Nitrophenol	(I	D) P	henol	
24.	An alkene C ₇ H ₁₄ on red	uctive ozonolysis gives an ald	ehyde	with formula C ₃ H ₆ O and a ketone.	
	The ketone is:				
	(A) 2-Butanone	(H	3) 2-	-Pentanone	
	(C) 3-Pentanone	I)) P	ropanone	
25.	The increasing order of	the rate of addition of HCN to	the co	ompounds i) Formaldehyde ii)	
	Acetone iii) Acetophene	one iv) benzophenone			
	(A) $i < ii < iii < iv$	(H	3) iv	/< ii< iii < i	
	(C) $iv < iii < ii < i$	1)	D) iv	ı< i≤ ii≤ iii	
26.	The carboxylic acid that	t does not undergo Hell-Vohla	rd-Zel	linsky reaction is:	
	(A) CH_3COOH	(H	B) (C	CH ₃) ₂ CHCOOH	
	(C) $CH_3CH_2CH_2CO$	OH (I	D) (C	CH ₃) ₃ CCOOH	
27.	NaNO ₂ /HC	l P/Br ₂ NH ₃			
	$C_2H_5NH_2$ —	$\bullet X \longrightarrow Y \longrightarrow Z$			
		(excess)			
	In the above sequence, 1	Z 15:			
	(A) cyanoethane	1)	s) et	thanamide	
• •	(C) methanamine	(1) Ε	thanamine	
28.	The attachment of whic value?	h of the following group at par	a posi	ition in aniline will raise the K_b	
	(A) $-SO_3H$	(H	B) –	ОН	
	(C) –F	(I)) –	·Br	
29.	Which of the following	is an example of globular prot	ein?		
	(A) myosin	(H	B) co	ollagen	
	(C) keratin	(I	D) ha	aemoglobin	
30.	Which one of the follow	ving is synthesized in our body	' by su	in rays?	
	(A) Vitamin D	(H	B) V	'itamin B	
	(C) Vitamin K	I)	D) V	Vitamin A	
31	Conrolactum is the is th	e starting material for the synt	hosis (of	
51.	(A) Nylon-6	(F	(10.513)	vlon6 6	
	(C) Tervlene)) N	[vlon 10	
32	The species which can a	erve as an initiator for cationi	r nolv	merization is	
52.	(Δ) I ithium alumini	um hydride	r pory	litric acid	
	(C) Aluminium chlo	ride (I)) R	al i	
22	Aspirin is on:		<i>,</i> , ,		
55.	(Δ) analogoio	1	2) or	ntinvretic	
	(Γ) antimalarial	1) /T)) R	oth analogsic and antipyretic	
		(1	<i>,</i> р	our analgesie and antipyrette	

34.	The equivalent mass of iron in the reaction $2Fe + 3$	$Cl_2 \rightarrow$	• 2FeCl ₃ is:
	(A) Half of its atomic mass	(B)	One third of its atomic mass
	(C) Same as atomic mass	(D)	One fourth of its atomic mass
35.	Which of the following sets of quantum numbers is	s corre	ct for an electron in 4f subshell?
	(A) $n=4, l=3, m=4, s=+1/2$	(B)	n=4, l=3, m=-4, s=-1/2
	(C) $n=4, l=3, m=+1, s=+1/2$	(D)	n=3, l=2, m=-2, s=+1/2
36.	The correct sequence of atomic radii is:		
	(A) Na>Mg>Al>Si	(B)	Al>Si>Na>Mg
	(C) Si>Al>Mg>Na	(D)	Si>Al>Na>Mg
37.	In which of the following, the bond angle around the	ne cen	tral atom is maximum?
	(A) NH_3	(B)	$\mathrm{NH_4}^+$
	(C) PCl ₃	(D)	SCl ₂
38.	Which of the following molecule does not exist	. /	
	(A) NF_3	(B)	NF ₅
	(C) PF ₅	(D)	N_2H_4
39.	If helium is allowed to expand in vacuum, it liberat	tes hea	it because
	(A) It is an inert gas	(B)	It is an ideal gas
	(C) Its critical temp. is low	(D)	It is a light gas
40	i) $H_2(g) + 1/2O_2(g) \rightarrow H_2O(I) + x KJ$ ii) $H_2(g) + 1/2O_2(g) \rightarrow H_2O(I) + x KJ$ iii) $H_2(g) + x KJ$ iii)	$1/2O_{2}$	$(g) \rightarrow H_2O(g) + y KJ$. For the given two
	reactions,		(8)
	(A) $x > y$	(B)	x <y< td=""></y<>
	(C) x=y	(D)	x+y=0
41.	If the bond dissociation energies of XY, X_2 , Y_2 (all	diato	mic molecules) are in the ratio 1:1:0.5,
	respectively and Δ_{f} H of XY is -200KJmol ⁻¹ , the bo	nd dis	sociation energy of X_2 will be:
	(A) 400 KJmol^{-1}	(B)	300 KJmol ⁻¹
	(C) 200 KJmol^{-1}	(D)	100 KJmol ⁻¹
42	What will be the correct order of vapour pressure of	f wate	r ethanol and ether at 30^{0} C? Given that
12.	among these compounds water has maximum boili	ng noi	nt and ether has minimum boiling point
	(A) Water <ether<ethanol< td=""><td>(B)</td><td>Water<ethanol<ether< td=""></ethanol<ether<></td></ether<ethanol<>	(B)	Water <ethanol<ether< td=""></ethanol<ether<>
	(C) Ether <ethanol<water< td=""><td>(D)</td><td>Ethanol<ether<water< td=""></ether<water<></td></ethanol<water<>	(D)	Ethanol <ether<water< td=""></ether<water<>
42		(D)	
43.	which of the following will occur if a 0.1M solution	on of a	weak acid is diluted to 0.01M at
	$(\Lambda) = [H^+]$ will decrease to 0.001M	(\mathbf{P})	nH will decrease
	(A) [A] will decrease to 0.001M (C) Percentage ionization will increase	(\mathbf{D})	K will increase
	(C) Fercentage formzation with increase	(D)	\mathbf{X}_{a} with increase
44.	which of the following species involves the transfer (A) $M_{\rm PO}^{2^2}$ $M_{\rm PO}^{-2}$	c 10 15	N_A electrons per mole of it ?
	(A) $\operatorname{MinO}_4 \to \operatorname{MinO}_4$ (C) $\operatorname{MinO}_2 \to \operatorname{MinO}_4$	(B)	$\operatorname{MinO}_4 \to \operatorname{Min}_4$ $\operatorname{Crop}_{2^-} \cdot \operatorname{Cr}_{3^+}^{3^+}$
	(C) $\operatorname{MinO}_4 \rightarrow \operatorname{MinO}_2$	(D)	$CrO_4 \rightarrow Cr$
45.	30-volume hyderogen peroxide means:		
	(A) 30% H ₂ O ₂ by volume	(B)	30g of H ₂ O ₂ solution containing 1g of
			it
	(C) 1 cm ³ of solution liberates 30 cm ³ of O_2	(D)	30 cm ³ of the solution contains one
	gas at STP		mole of H_2O_2
46.	The correct sequence of covalent character is repre	sented	by:
	(A) LiCl $<$ NaCl $<$ BeCl ₂	(B)	BeCl ₂ <licl<nacl< td=""></licl<nacl<>
	(C) NaCl <licl< <math="">BeCl_2</licl<>	(D)	BeCl ₂ <nacl<licl< td=""></nacl<licl<>

47.	Whic	h of the following is known as pyrene?		
	(A)	CCl ₄	(B)	CS_2
	(C)	S_2Cl_2	(D)	Solid CO ₂
48.	The n	nost stable carbocation amongst the following	g is:	
	(A)	$(CH_3)_2CH^+$	(B)	Ph_3C^+
	(C)	CH ₂ CH ₂ ⁺	(D)	$CH_2 = CH - CH_2^+$
10	(C) The n	nolecule that will have dinole moment is:	(D)	
τ).	(Δ)	2 2-Dimethylpropane	(B)	Cis-2-Butene
	(\mathbf{A})	Trans-7-Butene	(\mathbf{D})	2 2 3 3-Tetramethylbutane
50	(C)	a five isomeric havenes, the isomer which are		two monochloringtod compound is:
50.	(Λ)	2 Mathylpantana	(\mathbf{P})	2 2 Dimethylbutane
	(\mathbf{A})	2 3 Dimethylbutane	(\mathbf{D})	n Hevane
51	(C) Whie	2,5-Dimetryloutane	(D)	II-Hexalle
51.	winc (A)	Yulam yaqqala	(D)	Sieve tubes
	(\mathbf{A})	Aylelli vessels Moristom	(D)	Sieve tubes
50	(C)	Menstein	(D)	Cork cens
52.	Fathe	er of taxonomy is		т.
	(A)	John Ray	(B)	Linnaeus
	(C)	Aristotie	(D)	Lamark
53.	Whic	h of the following has more characters in con	nmon	
	(A)	Species	(B)	Genus
	(C)	Class	(D)	Division
54.	Ricci	a is a liverwort as it		
	(A)	produces liver diseases	(B)	is present in liver
	(C)	cures liver diseases	(D)	is like a flat lobed thallus
55.	Gym	nosperms are characterized by		
	(A)	Large leaves	(B)	Ciliated sperms
	(\mathbf{C})	Naked ovules	(D)	Scale leaves
56	(c)	at parasite is	(2)	
50.	AIUU	n parasite is		
	(A)	Cuscuta	(B)	Striga
	(C)	Brassica	(D)	loranthus
57.	Roots	s that grow from any part of the plant body of	her tha	in the radicles are
	(A)	Adventitious roots	(B)	Tap roots
	(C)	Modified roots	(D)	Aerial roots
58.	Paral	lel venation is a characteristic of		
	(A)	Parasitic plants	(B)	Xerophytic plants
	(C)	Legumes	(D)	Grasses
59.	A bis	exual flower which never opens in its life spa	n is ca	illed
	(A)	Cleistogamus	(B)	Heterogamus
	(C)	Homogamus	(D)	Dichogamus
	(-)			
60.	Quies	scent centre is located in		
	(À)	Shoot apex	(B)	Root apex
	(C)	Leaf apex	(D)	Bud apex
61.	Caspa	arian strips occur in the cells of		-
	(A)	Epidermis	(B)	Exodermis
	(C)	Endodermis	Ď	Hypodermis
	. /			- 1

62.	Vascu	lar bundles are absent in			
	(A)	Monocots	(B)	Dicots	
	(C)	Gymnosperms	(D)	Pteridophytes	
63.	Aeren	hchyma is derived from			
	(A)	Parenchyma	(B)	Sclerenchyma	
	(C)	Phloem	(D)	Xylem	
64.	Vascu	lar bundle having cambium is			
	(A)	closed	(B)	open	
	(C)	conjoint	(D)	collateral	
65.	What	do vou eat in coconut			
	(A)	Embryo	(B)	Mesocarp	
	(C)	Entire seed	(D)	Fruit wall	
66	Phyllo	ode is a modification of	, í		
	(A)	Flower	(B)	Bud	
	(C)	Root	(D)	Petiole	
67	Finge	rmillet is			
07.	(A)	Eleusine	(B)	Setaria	
	(C)	Pennisetum	(D)	Sorghum	
68	Miero	osporophyll of Cycas is equivalent to	of	angiosnerms	
00.	(A)	Senal	(B)	Stamen	
	(C)	Ovary	(D)	Ovule	
69	Iackfi	uit is an example of	(-)		
07.	(A)	Multiple fruit	(B)	Aggregate fruit	
	(\mathbf{C})	Simple fruit	(D)	None of these	
70	Anther wall in angiognerms contain how many wall layers				
70.	(\mathbf{A})	3	(\mathbf{R})	Δ	
	(\mathbf{C})	5	(D)	6	
71	(C) If an e	5 endosperm cell of angiosperm has 36 chromo	(D)	6 the root cell should have	
71.	(C) If an e	5 endosperm cell of angiosperm has 36 chromo	(D) (D) somes (B)	6 s, the root cell should have 16	
71.	(C) If an e (A) (C)	5 endosperm cell of angiosperm has 36 chromo 18 4	(D) (D) osomes (B) (D)	6 s, the root cell should have 16 24	
71.	(C) If an e (A) (C) A min	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by	(D) (D) osomes (B) (D)	6 s, the root cell should have 16 24	
71. 72.	(C) If an e (A) (C) Amin (A)	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg	(D) (D) osomes (B) (D) (B)	6 s, the root cell should have 16 24 Cu	
71. 72.	(C) If an e (A) (C) Amin (A) (C)	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn	(D) psomes (B) (D) (B) (D)	6 a, the root cell should have 16 24 Cu Fe	
71.72.73	(C) If an e (A) (C) Amin (A) (C) Numb	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn per of net gain ATP in aerobic respiration is	(D) osomes (B) (D) (B) (D)	6 s, the root cell should have 16 24 Cu Fe	
71.72.73.	(C) If an e (A) (C) Amin (A) (C) Numb (A)	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn per of net gain ATP in aerobic respiration is	(D) (D) promes (B) (D) (B) (D) (B)	6 a, the root cell should have 16 24 Cu Fe 42	
71.72.73.	(C) If an c (A) (C) Amin (A) (C) Numb (A) (C)	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn ber of net gain ATP in aerobic respiration is 2 38	(D) (D) (B) (D) (B) (D) (B) (D)	6 s, the root cell should have 16 24 Cu Fe 42 41	
71.72.73.74	(C) If an c (A) (C) Amin (A) (C) Numb (A) (C) Numb (A) (C) One of the set o	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn ber of net gain ATP in aerobic respiration is 2 38	(D) (D) posomes (B) (D) (B) (D) (B) (D) bio res	6 5, the root cell should have 16 24 Cu Fe 42 41 piration produces	
71.72.73.74.	(C) If an e (A) (C) Amin (A) (C) Numb (A) (C) One g (A)	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn ber of net gain ATP in aerobic respiration is 2 38 clucose molecule partially oxidized in anaero 30 ATPs	(D) posomes (B) (D) (B) (D) (B) (D) bic res (B)	6 a, the root cell should have 16 24 Cu Fe 42 41 piration produces 38 ATPs	
71.72.73.74.	(C) If an e (A) (C) Amin (A) (C) Numb (A) (C) One g (A) (C)	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn ber of net gain ATP in aerobic respiration is 2 38 clucose molecule partially oxidized in anaero 30 ATPs 2 ATPs	(B) (D) soomes (B) (D) (B) (D) (B) (D) bic res (B) (D)	6 5, the root cell should have 16 24 Cu Fe 42 41 piration produces 38 ATPs 15 ATPs	
 71. 72. 73. 74. 75. 	(C) If an e (A) (C) Amin (A) (C) Numb (A) (C) One g (A) (C) In for e	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn ber of net gain ATP in aerobic respiration is 2 38 clucose molecule partially oxidized in anaero 30 ATPs 2 ATPs	(B) (D) soomes (B) (D) (B) (D) (B) (D) bic res (B) (D)	 6 6 6 7 6 6 6 16 24 24 Cu Fe 42 41 piration produces 38 ATPs 15 ATPs 	
 71. 72. 73. 74. 75. 	(C) If an e (A) (C) Amin (A) (C) Numb (A) (C) One g (A) (C) In for	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn ber of net gain ATP in aerobic respiration is 2 38 clucose molecule partially oxidized in anaero 30 ATPs 2 ATPs est ecosystem green plants are Primary consumers	(B) (D) soomes (B) (D) (B) (D) (B) (D) bic res (B) (D)	6 6, the root cell should have 16 24 Cu Fe 42 41 piration produces 38 ATPs 15 ATPs Primary producers	
 71. 72. 73. 74. 75. 	(C) If an e (A) (C) Amin (A) (C) Numb (A) (C) One g (A) (C) In for (A) (C)	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn ber of net gain ATP in aerobic respiration is 2 38 elucose molecule partially oxidized in anaero 30 ATPs 2 ATPs est ecosystem green plants are Primary consumers Decomposers	(B) (D) soomes (B) (D) (B) (D) (B) (D) bic res (B) (D) (B) (D)	 6 6 6 7 6 6 7 6 8 7 7 8 7 8 8 7 8 8 9 9<	
 71. 72. 73. 74. 75. 76. 	(C) If an (A) (C) Amin (A) (C) Numb (A) (C) One g (A) (C) In for (A) (C) The formation of the formation o	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn ber of net gain ATP in aerobic respiration is 2 38 clucose molecule partially oxidized in anaero 30 ATPs 2 ATPs est ecosystem green plants are Primary consumers Decomposers	(B) (D) soomes (B) (D) (B) (D) (B) (D) (B) (D) (B) (D)	 6 6 a, the root cell should have 16 24 Cu Fe 42 41 piration produces 38 ATPs 15 ATPs 15 ATPs Primary producers None of these 	
 71. 72. 73. 74. 75. 76. 	(C) If an e (A) (C) Amin (A) (C) Numb (A) (C) One g (A) (C) In for (A) (C) The la	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn ber of net gain ATP in aerobic respiration is 2 38 clucose molecule partially oxidized in anaero 30 ATPs 2 ATPs est ecosystem green plants are Primary consumers Decomposers argest cell in the embryo sac is	(B) (D) soomes (B) (D) (B) (D) (B) (D) (B) (D) (B) (D) (B) (D)	 6 6 6 7 6 6 6 7 6 8 7 8 7 8 7 8 7 7<	
 71. 72. 73. 74. 75. 76. 	(C) If an a (A) (C) Amin (A) (C) Numb (A) (C) One g (A) (C) In for (A) (C) The la (A) (C)	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn ber of net gain ATP in aerobic respiration is 2 38 success molecule partially oxidized in anaero 30 ATPs 2 ATPs est ecosystem green plants are Primary consumers Decomposers argest cell in the embryo sac is Central cell Sumeroids	(B) (D) soomes (B) (D) (B) (D) (B) (D) (B) (D) (B) (D) (B) (D)	 6 6 a, the root cell should have 16 24 Cu Fe 42 41 piration produces 38 ATPs 15 ATPs Primary producers None of these Egg None of these 	
 71. 72. 73. 74. 75. 76. 	(C) If an e (A) (C) Amin (A) (C) Numb (A) (C) One g (A) (C) In for (A) (C) The la (A) (C)	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn ber of net gain ATP in aerobic respiration is 2 38 clucose molecule partially oxidized in anaero 30 ATPs 2 ATPs est ecosystem green plants are Primary consumers Decomposers argest cell in the embryo sac is Central cell Synergids	(B) (D) soomes (B) (D) (B) (D) (B) (D) (B) (D) (B) (D) (B) (D)	 6 6 a, the root cell should have 16 24 Cu Fe 42 41 piration produces 38 ATPs 15 ATPs 15 ATPs Primary producers None of these Egg None of these 	
 71. 72. 73. 74. 75. 76. 77. 	(C) If an (A) (C) Amin (A) (C) Numb (A) (C) Numb (A) (C) In for (A) (C) In for (A) (C) The la (A) (C) Doubb	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn ber of net gain ATP in aerobic respiration is 2 38 clucose molecule partially oxidized in anaero 30 ATPs 2 ATPs est ecosystem green plants are Primary consumers Decomposers argest cell in the embryo sac is Central cell Synergids le membrane is absent in Mitachandria	(B) (D) soomes (B) (D) (B) (D) (B) (D) (B) (D) (B) (D) (B) (D)	 6 6 a, the root cell should have 16 24 Cu Fe 42 41 piration produces 38 ATPs 15 ATPs 15 ATPs Primary producers None of these Egg None of these Egg None of these 	
 71. 72. 73. 74. 75. 76. 77. 	(C) If an e (A) (C) Amin (A) (C) Numb (A) (C) One g (A) (C) In for (A) (C) The la (A) (C) Doub (A) (C)	5 endosperm cell of angiosperm has 36 chromo 18 4 o acid synthetase enzyme is activated by Mg Zn ber of net gain ATP in aerobic respiration is 2 38 slucose molecule partially oxidized in anaero 30 ATPs 2 ATPs est ecosystem green plants are Primary consumers Decomposers argest cell in the embryo sac is Central cell Synergids le membrane is absent in Mitochondria Darawisome	(B) (D) soomes (B) (D) (B) (D) (B) (D) (B) (D) (B) (D) (B) (D) (B) (D)	 6 6 6 7 6 6 6 7 6 8 7 8 7 7<	

78.	DNA content is doubled in stage of cell division					
	(A)	Prophase	(B)	Metaphase		
	(C)	G ₁ phase	(D)	S- phase		
79.	A gro	oup of individuals of different specie	es is called			
	(A)	Population	(B)	Community		
	(C)	Biome	(D)	None of these		
80.	Purin	les are				
	(A)	Adenine and Guanine	(B)	Guanine and Cytosine		
	(C)	Thymine and Cytocine	(D)	Adenine and Thymine		
81.	The p	bigment which is absent in chloropla	ast is			
	(A)	Chlorophyll 'a'	(B)	Chlorophyll 'b'		
	(C)	Xanthphyll	(D)	Anthocyanine		
82.	Rate	of transpiration is measured by				
	(A)	Manometer	(B)	Potometer		
	(C)	Auxanometer	(D)	None of these		
83.	The s	tite of primary photochemical reacti	on is			
	(A)	Stroma	(B)	Grana		
	(C)	Periplast cavity	(D)	Inner layer		
84.	Fathe	er of green revolution in India is				
	(A)	N. Borlaug	(B)	K.C. Mehta		
	(C)	M.S. Swaminathan	(D)	None of these		
85.	Plant	s which grow in shade are				
	(A)	Sciophytes	(B)	Heliophytes		
	(C)	Halophytes	(D)	Psamophytes		
86.	The amount of living material in different trophic levels is called					
	(A)	Standing crop	(B)	Standing state		
	(C)	Dry weight	(D)	Biomass		
87.	In po	In pond ecosystem pyramid of number is always				
	(A)	Straight	(B)	Linear		
	(C)	Upright	(D)	Inverted		
88.	Vege	tation dominated by shrubs with few	w tall trees is cal	led		
	(A)	Serule	(B)	Marsh		
	(C)	Grassland	(D)	Forest		
89.	Total	energy produced during photosyntl	hesis is called			
	(A)	Total biomass	(B)	Net biomass		
	(C)	Net primary production	(D)	Gross primary production		
90.	Seco	ndary producers of the ecosystem at	re			
	(A)	Green plants	(B)	Primary consumers		
	(C)	Top consumers	(D)	None of these		
91.	The c	chemical knives of DNA are				
	(A)	Ligases	(B)	Polymerases		
	(C)	Endonucleases	(D)	Transcriptases		
92.	The I	ndian variety of rice patented by an	American comp	oany is		
	(A)	IR 8	(B)	Jaya		
	(C)	Sona masoori	(D)	Basmati		

93.	Pusa Komal is a variety of		
	(A) Cowpea	(B)	Wheat
	(C) Brassica	(D)	Chilli
94.	The stalk of the ovule that attaches it to the place	enta in ai	ngiosperms is
	(A) Pedicel	(B)	Funiculus
	(C) Integument	(D)	Hilum
95.	Vallisneria usually favours		
	(A) Zoophily	(B)	Entomophily
	(C) Hydrophily	(D)	Anemophily
96.	An example of single cell protein is		
	(A) Spirulina	(B)	Volvox
	(C) Spirogyra	(D)	Chlamydomonas
97.	Which forest is named as the "Lungs of the plan	et"?	
	(A) Western ghats	(B)	Eastern ghats
	(C) Amazon rain forest	(D)	Sahara desert
98.	The earth summit held at Rio de Janeiro was in t	he year	
	(A) 1986	(B)	1902
	(C) 1992	(D)	1996
99.	Lignified cell wall occurs in		
	(A) Epidermal cells	(B)	Cambial cells
	(C) Phloem cells	(D)	Xylem cells
100.	A slide of TS dicot stem shows		
	(A) Scattered vascular bundles	(B)	Vascular bundles arranged in a ring
	(C) Radial vascular bundles	(D)	Closed vascular bundles
101.	Once formed, red blood cells normally have an a	average l	ife span of
	(A) 30 days	(B)	60 days
	(C) 90 days	(D)	120 days
102.	Heparin, an anticoagulant is manufactured by		
	(A) Plasma cells	(B)	Mast cells
	(C) Lymphocytes	(D)	Blood platelets
103.	Function of long bones in mammals is to		
	(A) Provide support only	(B)	Provide support and production of
			RBC only
	(C) Provide support and production of WBC	(D)	Provide support and production of
	only		RBC and WBC
104.	Binocular vision is seen in		
	(A) Man	(B)	Rabbit
	(C) Rat	(D)	Guinea pig
105.	Spermatogenesis is influenced by		
	(A) Testosterone	(B)	Luteinizing hormone
	(C) FSH	(D)	All of these
106	The type of respiration found in man is		
100.	(A) Cutaneous	(B)	Subcutaneous
	(C) Pulmonary	(D)	Diffusion
107	What happens if RRCs are put in a hypertonic so	Jution	
107.	(A) They will contract and loose water	(R)	They will swell up and burst
	(C) They will show clumping	(D)	None of these

108.	In man, urea is formed in the (A) Body tissues (C) Liver	(B) (D)	Kidney Spleen
109.	Which of the following stood erect first(A) Java man(C) Australopithecus	(B) (D)	Peking man Cro-Magnon man
110.	The first autotrophs on the earth were(A) Viruses(C) Green algae	(B) (D)	Bacteria Blue green algae
111.	The 'Use and disuse' principle of evolution was p.(A) Lamarck(C) Hugo de Vries	roposeo (B) (D)	d by Weisman Charles Darwin
112.	The following is an example of inborn error in me(A) Spina bifida(C) Phocomelia	tabolis (B) (D)	m Phenylketonuria Mongolism
113.	Identical twins develop from(A) One ovum and two sperms(C) Two ova and two sperms	(B) (D)	Two ova and one sperm None of these
114.	The chromosomes are best studied at the following(A) Prophase(C) Anaphase	g stage (B) (D)	of mitosis Metaphase Telophase
115.	 A monosomic individual can be mathematically re (A) 2n-2 (C) 2n-1 	epresen (B) (D)	tted as 2n+1 2n-4
116.	 In a fruit fly, a white eyed XXY female is mated to would be (A) All red eyed (C) Mainly red eyed with a few white eyed 	o a red (B) (D)	eyed XY male. The female progeny All white eyed Mainly white eyed with a few red eyed
117.	One of the following is a sex linked trait in human (A) Curly hairs (C) Colour blindness	(B) (D)	Sickle cell anemia Down's syndrome
118.	First experimental evidence for triplet code was gi(A) Nirenberg(C) Watson	iven by (B) (D)	H.G. Khorana F.H.C. Crick
119.	Protein coat virus is known as(A) Capsid(C) Virion	(B) (D)	Capsomere Viroid
120.	Chemically a gene is(A) Nucleoprotein(C) Ribonucleic acid	(B) (D)	Polypeptide Polynucleotide
121.	 Apes differ from man in having (A) Arms shorter than legs (C) Length of arms and legs is similar 	(B) (D)	Legs shorter than arms A tail
122.	The disease transmitted through sexual contact is(A) Measles(C) Polio	(B) (D)	Syphilis Small pox

123.	Нуре	rsensitivity of tissue occurs in		
	(A)	Cancer	(B)	Malaria
	(C)	Allergy	(D)	Small pox
124.	The s	porozoites of malarial parasites are stored in		
	(A)	Liver of man	(B)	Blood of man
	(C)	Stomach of females anopheles	(D)	Salivary glands of female anopheles
125.	The f	ollowing plant has male and female reproduc	tive pa	arts in the same flower
	(A)	Papaya	(B)	Datepalm
	(C)	Cycas	(D)	Datura
126.	Opiu	m is derived from		
	(A)	Latex of Papaver somniferum	(B)	Seeds of Papaver somniferum
	(C)	Seeds of <i>Coffee arabica</i>	(D)	Leaves of datura
127.	Penic	cillium was first isolated from		
	(A)	Penicillium nigricans	(B)	Penicillium chrysogenum
	(C)	Penicillium notatum	(D)	Penicillum griseofulvum
128.	Whic	h of the following is an implant?		
	(A)	Blood diasyser	(B)	Heart valve
	(C)	Artificial limbs	(D)	Oxygenator
129.	Chem	nical nature of jute fibre is		
	(A)	Lignin	(B)	Cellulose
	(C)	Pectin	(D)	Suberin
130.	The c	onversion of molecular nitrogen to ammonia	is kno	wn as
	(A)	Nitrification	(B)	Denitrification
	(C)	Ammonification	(D)	Nitrogen fixation
131.	Coca	ine is a powerful stimulant of		
	(A)	Heart beat	(B)	Central nervous system
1.2.0	(C)	Muscles	(D)	Breatning
132.	Daigr	nosis of typhoid is done by	(D)	
	(A)	ESR DLC	(B)	ELISA test
122	(C)		(D)	widal test
133.	Scien	tific study of human population is called	(D)	Casamanha
	(A)	Anthropology	(B)	Geography
124	(C)		(D)	Biogeography
134.	Vineg	activity of A activity of	(D)	Lastahasillus
	(A)	Nostoc	(D)	Anabaena
125			(D)	
135.	1 he 1	Colour blindness	some n (\mathbf{P})	Umber Haamanhilia
	(A)	Down's syndrome	(D)	Jaundice
126			(D)	Jaunalee
130.	(Λ)	Annelid	(P)	Helminthes
	(\mathbf{A})	A fungus	(\mathbf{D})	A bacterium
127		A lungus	(D)	A bacterium
137.	(Λ)	Norois	(P)	Octopus
	(\mathbf{A})	Drawn	(\mathbf{D})	Frog
120	(C) The r	records of translation is	(D)	1105
138.	(Λ)	Ribosome synthesis	(\mathbf{R})	Protein synthesis
	(A)	DNA synthesis	(D)	RNA synthesis
		Divis Synthesis	(D)	1X1 V2 1 Synthesis

139.	Deng	ue is transmitted by		
	(A)	Culex	(B)	Male anopheles
	(C)	Aedes	(D)	Female anopheles
140.	Youn	g of cockroach is called		
	(A)	Ephyra	(B)	Nymph
	(C)	Maggot	(D)	Juvenile
141.	Numb	per of mitotic divisions required to produce 12	28 cell	s from a single cell is
	(A)	7	(B)	14
	(C)	16	(D)	32
142.	Distar	nce between two adjacent nitrogen bases of D	NA is	
	(A)	2.4 A ^o	(B)	3.4 A ^o
	(C)	24 A ^o	(D)	34 A ^o
143.	In add	lition to the nucleus, DNA also occurs in		
	(A)	Mitochondria	(B)	Lysosome
	(C)	Ribosome	(D)	Golgi appratus
144.	First p	photosynthetic organisms to develop on earth	were	
	(A)	Bacteria	(B)	Diatoms
	(C)	Cyanobacteria	(D)	Green algae
145.	The v	ector for causing sleeping sickness in man is		
	(A)	House fly	(B)	Tse-Tse fly
	(C)	Butterfly	(D)	Mosquito
146.	Chror	nosomes are stained with		
	(A)	Saffranine	(B)	Acetocarmine
	(\mathbf{C})	Sciff's reagent	(D)	Ethanol
147	Theu	niversal recipient blood group is	(2)	
11/.	(A)	A	(B)	AB
	(C)	0	(D)	B
148	Arsen	ic pollutant in drinking water causes		
1.01	(A)	Liver and lung diseases	(B)	Paralysis
	(C)	Kidney diseases	(D)	Cancer
149.	In the	colony of Apis indica, the one formed by par	theno	genesis is
	(A)	Queen	(B)	Worker
	(C)	Drone	(D)	Both B and C
150.	The p	ollutant responsible for chromosomal mutation	ons in	man is
	(A)	Lead	(B)	Manganese
	(C)	Arsenic	(D)	Mercury
151.	While	e walking on smooth surface one should take	small	steps to ensure
	(A)	Large friction	(B)	Small friction
	(C)	Larger normal force	(D)	Smaller normal force
152.	What	happens to a vehicle travelling in an unbanke	d curv	ved path if the friction between the road
	and ti	res suddenly disappears		
	(A)	Moves along tangent	(B)	Moves radially in
	(C)	Moves radially out	(D)	Moves along the curve
153.	A bal	l of mass 0.2 kg strikes an obstacle and move	s at 60	9° to its initial direction. If its speed
	chang	es from 20m/s to 10m/s the magnitude of imp	oulse r	received by the ball isNs
	(A)	$2\sqrt{7}$	(B)	$2\sqrt{3}$
	(C)	2√5	(D)	$3\sqrt{2}$

154. A spacecraft of mass 2000 kg moving with 600 m/s suddenly explodes into two pieces. One piece of mass 500 kg is stationary. The velocity of other part in m/s is
(A) 600
(B) 800

156. A man of mass 40 kg is at rest between the walls. If coeff. of friction between man and wall is 0.8, find the normal reaction exerted by wall on man (take g = 10 m/s/s)

	(C)	Pressure increases	(D)	Pressure decreases
174.	In a g (A)	ive process dW=0, dq is <0 then for a gas Temperature increases	(B)	Volume decreases
173.	Specia given (A) (C)	fic heat of a substance depends on 1. Nature of to substance Only one is correct All are correct	of subs (B) (D)	Both 1 and 2 are correct Only 1 and 3 are correct
172.	There (A) (C)	is a circular hole in metal plate. When the plaincreased unchanged	ate is h (B) (D)	neated the radius of the hole becomes decreased depends on metal
171.	When throug The v (A) (C)	h kerosene and coconut oil of coeff. of viscosi gh the same pipe, under same pressure differe olume of kerosene that flows is 5.5 lit 7.7 lit	ty 0.00 ince an (B) (D)	02 and 0.0154 Ns/m ² are followed ad same time collects 1 lit of coconut oil. 6.6 lit 8.8 lit
170.	A hyd other (A) (C)	fraulic press uses a piston of 100 cm ² to exert a piston that supports a mass of 2000 kg is (tak 100cm ² 2 x 10 ⁴ cm ²	a force e g = 1 (B) (D)	e of 10^7 dynes on water. The area of the 10m/s/s) 10^9 cm ² 2×10^{10} cm ²
169.	The te liquid (A) (C)	erminal velocity of a spherical ball of lead of a varies with R such that V/R is constant V is constant	radius (B) (D)	R is Vwhile falling through a viscous VR is constant V/R^2 is constant
168.	Two b 3/5 th c (A) (C)	blocks A and B float in water. A floats with 1 of its volume immersed. The ratio of their den 5:12 3:20	/4 th of sities (B) (D)	its volume immersed and B floats with is 12:5 20:3
167.	The le /s is (1 (A) (C)	evel of water in a tank is 5m. A hole 1 cm ² is take $g=10 \text{ m/s/s}$) 10^{-3} 10	(B) (D)	at the bottom. The rate of leakage in m ³ 10^{-4} 10^{-2}
100.	of the (A) (C)	ir rotational K.E is 1:2 1:4	(B) (D)	2:1 4:1
165.	If the (A) (C)	velocity of C.M of a rolling body is V, then v $\sqrt{2V}$ 2V	(B) (D)	y of highest point in the body will be V $V/\sqrt{2}$
164.	A uni slippi (A) (C)	form rod of mass M and length L standing ve ng at the bottom. The moment of inertia will $ML^{2}/3$ $ML^{2}/9$	rtically be (B) (D)	y on a horizontal floor falls without $ML^{2}/6$ $ML^{2}/12$
163.	25 kg requir (A) (C)	of sand is deposited each second on a convey red to maintain the belt in motion is 2600W 325W	vor bel (B) (D)	t moving at 10m/s. The extra power 250W 2500W

175.	The efficiency of carnot engine depends on	
	(A) Working substance	(B) Sink temperature
	(C) Source temperature	(D) Both B and C
176.	A 200 turn coil of self inductance 30 mH carrie	ies a current of 5 mA. Find the magnetic flux linked
	with each turn of coil.	_
	(A) $7.5 \times 10^{-7} \text{Wb}$	(B) $1.6 \times 10^{-7} Wb$
	(C) $3 \times 10^{-7} \text{Wb}$	(D) $1.5 \times 10^{-7} \text{Wb}$
177.	The instantaneous value of current in an AC cir	Fircuit is I = 2 sin (100 π t + $\pi/3$) A. At what first
	time the current will be maximum?	
	(A) $1/100 \text{ s}$	(B) $1/200 \text{ s}$
	(C) $1/500 \text{ s}$	(D) $1 s$
178.	What in electric system represents force in mec	echanical system ?
	$\begin{array}{cc} (A) & L \\ (O) & 1/O \end{array}$	(B) I
	(C) $1/C$	(D) q
179.	A capacitor of 1 μ F is charged with 0.01C of el	electricity. How much energy is stored in it?
	(A) $30 J$	(B) 40 J
	(C) 50 J	(D) 60 J
180.	An electromagnetic wave is travelling in vacuu	um with a speed of 3 x 10° m/s. Find the velocity in
	a medium having relative electric and magnetic	ic permeability 2 and 1, respectively.
	(A) $3/\sqrt{2} \times 10^8 \text{m/s}$	$\begin{array}{c} (B) & 1.5 \times 10^{\circ} \text{m/s} \\ (D) & \text{No sharps} \end{array}$
101		
181.	Trace the path of ray of light passing through a	a glass prism as shown in the figure. If the
	refractive index of glass is $\sqrt{3}$, find out the valu	lue of angle of emergence from prism.
	60	
	(A) 30	(B) 45
	(C) 60	(D) 75
182.	Light wave from two coherent sources of intens	nsities in ratio 64:1 produces interference. Calculate
	the ration of maximum and minima of the inter	erference pattern.
	(A) 8:1	(B) $64:1$
	(C) 9.7	(D) 81:49
183	In young's experiment, the width of the fringes	as obtained with light of wavelength 6000 Λ^0 is 2
165.	mm What will be the fringe width if the entire	re apparatus is immersed in a liquid of refractive
	index 1 33?	te apparatus is minersed in a riquid of renderive
	(A) 1 mm	(B) 1.5 mm
	(C) 2 mm	(D) 2.5 mm
184	(C) 2 mm	
10.11	Unpolarised light is incident on plane glass su	urface What should be the angle of incidence in
	Unpolarised light is incident on plane glass sur degrees, so that the reflected and refracted rays	urface. What should be the angle of incidence in 's are perpendicular to each other?
	Unpolarised light is incident on plane glass sur degrees, so that the reflected and refracted rays (A) 37	urface. What should be the angle of incidence in 's are perpendicular to each other? (B) 47
	 Unpolarised light is incident on plane glass sur degrees, so that the reflected and refracted rays (A) 37 (C) 57 	urface. What should be the angle of incidence in rs are perpendicular to each other? (B) 47 (D) 67
185.	 (C) 2 min Unpolarised light is incident on plane glass sur degrees, so that the reflected and refracted rays (A) 37 (C) 57 Determine the de-Broglie wavelength associate 	urface. What should be the angle of incidence in rs are perpendicular to each other? (B) 47 (D) 67 ted with an electron, accelerated through a potential
185.	 Unpolarised light is incident on plane glass surdegrees, so that the reflected and refracted rays (A) 37 (C) 57 Determine the de-Broglie wavelength associated difference of 100 V. 	urface. What should be the angle of incidence in 's are perpendicular to each other? (B) 47 (D) 67 ted with an electron, accelerated through a potential
185.	 (C) 2 min Unpolarised light is incident on plane glass surdegrees, so that the reflected and refracted rays (A) 37 (C) 57 Determine the de-Broglie wavelength associated difference of 100 V. (A) 1.227A° 	urface. What should be the angle of incidence in rs are perpendicular to each other? (B) 47 (D) 67 ted with an electron, accelerated through a potential (B) 12.27A°
185.	 (C) 2 min Unpolarised light is incident on plane glass surdegrees, so that the reflected and refracted rays (A) 37 (C) 57 Determine the de-Broglie wavelength associated difference of 100 V. (A) 1.227A° (C) 122.7A° 	urface. What should be the angle of incidence in rs are perpendicular to each other? (B) 47 (D) 67 ted with an electron, accelerated through a potential (B) 12.27A° (D) 1227A°

193. Net capacitance of 3 identical capacitor in series is 1 μ *F*. What is the net capacitance in μ *F* if connected in parallel?

(A) 3 (B) 6 (C) 9 (D) 12

194. An inductor of 5H carries a steady current of 2A. In what time if the current is made zero can a 40V self induced emf be produced in the inductor.

(A) 2s (B) 1s (C) 0.5s (D) 0.25s

195. A cell of emf E and internal resistance r gives 0.5A with R=12 ohms and 0.25 with R = 25 ohms. Its internal resistance in ohms will be

(A)	0.5	(B)	1
(C)	2	(D)	3

196.

Find current in the following circuit

- 197. Two identical circular loops P and Q of radius r are placed in parallel planes with same axis at a distance of 2r. Find B at the midpoint of the axis between them if same current I flows through both loops.
 - (A) $\hat{\mu}_0 I/2^{3/2} r$

(B) $\mu_0 2 I/2^{3/2} r$

2Ω

(C) $\mu_0 I/4\pi r$

- (D) $\mu_{02} \nu_{2} \nu_{1}$ (D) Cannot be determined
- 198. A block of mass 4 kg is kept on a rough horizontal surface. The coefficient of static friction is 0.8. If a force of 19 N is applied on the block parallel to the floor, then the force of friction between the block and floor is:

(A)	19N	(B)	18 N
(C)	16N	(D)	9.8N

199. Current in a circuit falls steadily from 2A to 0A in 10 ms. Calculate L if emf induced is 200V.

- (A) 1H (B) 2H (C) 3H (D) 4H
- 200. Self inductance of the air core inductor increases from 0.01 mH to 10 mH on introducing an iron core. What is the relative permeability of the core used?
 - (A)500(B)800(C)900(D)1000
| Sr. | Question |
|-----|----------|
| No. | |

1. While walking on smooth surface one should take small steps to ensure Large friction Small friction (A) (B) (C) Larger normal force Smaller normal force (D) 2. What happens to a vehicle travelling in an unbanked curved path if the friction between the road and tires suddenly disappears Moves along tangent (A) (B) Moves radially in Moves radially out Moves along the curve (C) (D) A ball of mass 0.2 kg strikes an obstacle and moves at 60° to its initial direction. If its speed 3. changes from 20m/s to 10m/s the magnitude of impulse received by the ball is -----Ns (A) (B) $2\sqrt{3}$ $2\sqrt{7}$ (C) $2\sqrt{5}$ (D) $3\sqrt{2}$ A spacecraft of mass 2000kg moving with 600 m/s suddenly explodes into two pieces. One piece 4. of mass 500 kg is stationary. The velocity of other part in m/s is (A) 600 (B) 800 1500 1000 (C) (D) 5. 16 kg 140 N 8 kg 4 kg The force on 16 kg is....? 140N (A) (B) 120N (C) 100N (D) 80N A man of mass 40 kg is at rest between the walls. If co eff. of friction between man and wall is 6. 0.8, find the normal reaction exerted by wall on man (take g = 10 m/s/s)

7.

(A)	7D/4	(B)	9D/4
(C)	5D/4	(D)	3D/4

8.	Gravitational force between two bodies is F. The space around the mass is now filled with a liquid of specific gravity 3. The gravitational force will be		
	(A) F/9 (C) F	(B) 3F (D) F/3	
9.	A man weighs 75 kg on the surface of earth. F(A) infinity(C) zero	His weight on the geostationary satellite is (B) 150kg (D) 75/2 kg	
10.	g at a depth of 1600 km inside the earth in m/ (A) 6.65 (C) 8.65	/s/s is (B) 7.35 (D) 4.35	
11.	A block of mass 19 M is suspended by a string embedded in it. If the block completes the ver (A) 140 (C) $20\sqrt{9.8}$	g of length 1m. A bullet of mass M hits it and gets rtical circle the velocity of bullet in m/s is (B) $20\sqrt{19.6}$ (D) 20	
12.	A rubber ball falls from a height of 4m and relimpact is (A) 20 (C) 23	bounds to 1.5m. The % loss of energy during the (B) 62.5 (D) 60	
13.	 25 kg of sand is deposited each second on a correquired to maintain the belt in motion is (A) 2600W (C) 325W 	 (B) 250W (D) 2500W 	
14.	A uniform rod of mass M and length L standin slipping at the bottom. The moment of inertia (A) ML ² /3 (C) ML ² /9	ng vertically on a horizontal floor falls without will be (B) ML ² /6 (D) ML ² /12	
15.	If the velocity of C.M of a rolling body is V, t (A) $\sqrt{2}$ V (C) 2V	then velocity of highest point in the body will be (B) V (D) $V/\sqrt{2}$	
16.	The angular momentum of two rotating bodies of their rotational K.E is (A) 1:2 (C) 1:4	s are equal. If the ratio of their M.I is 1:4, the ratio (B) 2:1 (D) 4:1	
17.	The level of water in a tank is 5m. A hole 1 cr /s is (take $g=10 \text{ m/s/s}$) (A) 10^{-3} (C) 10	m ² is made at the bottom. The rate of leakage in m (B) 10^{-4} (D) 10^{-2}	
18.	Two blocks A and B float in water. A floats w $3/5^{\text{th}}$ of its volume immersed. The ratio of thei (A) 5:12 (C) 3:20	vith 1/4 th of its volume immersed and B floats with ir densities is (B) 12:5 (D) 20:3	
19.	The terminal velocity of a spherical ball of lea liquid varies with R such that (A) V/R is constant (C) V is constant	 ad of radius R is V while falling through a viscous (B) VR is constant (D) V/R² is constant 	

20.	A hydraulic press uses a p other piston that supports (A) 100 cm^2 (C) $2 \times 10^4 \text{ cm}^2$	piston of 100 cm ² to exert a f a mass of 2000 kg is (take g (1) (1)	force g = 1 B) D)	of 10^7 dynes on water. The area of the 0m/s/s) 10^9 cm ² 2×10^{10} cm ²
21.	When kerosene and cocor through the same pipe, un The volume of kerosene t (A) 5.5 lit	nut oil of co eff. of viscosity nder same pressure differenc hat flows is	v 0.00 ce an B)	 02 and 0.0154 Ns/m² are allowed d same time collects 1 lit of coconut oil. 6.6 lit
	(C) 7.7 lit		D)	8.8 lit
22.	There is a circular hole in(A) increased(C) unchanged	metal plate. When the plate	e is h B) D)	eated the radius of the hole becomes decreased depends on metal
23.	Specific heat of a substan	ce depends on 1. Nature of s	subs	tance. 2. Mass of substance. 3. Heat
	(A) Only 1 is correct(C) All are correct	() ()	B) D)	Both 1 and 2 are correct Only 1 and 3 are correct
24.	In a give process dW=0, c (A) Temperature incre (C) Pressure increases	dq is <0 then for a gas ases (1)	B) D)	Volume decreases Pressure decreases
25.	The efficiency of carnot e(A) Working substance(C) Source temperature	engine depends on e (1 e (1	B) D)	Sink temperature Both B and C
26.	A 200 turn coil of self ind with each turn of coil.	luctance 30 mH carries a cu	rrent	t of 5 mA. Find the magnetic flux linked
	(A) 7.5×10^{-7} Wb (C) 3×10^{-7} Wb	() (1	B) D)	1.6 x 10 ⁻⁷ Wb 1.5 x 10 ⁻⁷ Wb
27.	The instantaneous value of time, the current will be n	of current in an AC circuit is naximum?	s I =	$2 \sin (100 \pi t + \pi/3)$ A. At what first
	(A) 1/100 s (C) 1/500 s		B) D)	1/200 s 1 s
28.	What in electric system re	epresents force in mechanica	al sy	stem ?
	(A) L (C) $1/C$		B)	Ι
•			D)	q L
29.	A capacitor of 1 μ F is cha (A) 30I	arged with 0.01C of electric	ity. F B)	401 401
	(C) $50J$		D)	60J
30.	An electromagnetic wave a medium having relative (A) $3/\sqrt{2} \times 10^8$ m/s (C) 2×10^8 m/s	is travelling in vacuum with electric and magnetic perm ()	h a s leabi B)	peed of 3 x 10^8 m/s. Find the velocity in lity 2 and 1, respectively. 1.5×10^8 m/s
	$(C) 2 \times 10 \text{ III/S}$	()	D)	ino change

31. Trace the path of a ray of light passing through a glass prism as shown in the figure. If the refractive index of glass is $\sqrt{3}$, find out the value of angle of emergence from prism.

- 39. The number of silicon atoms per m³ is 5 x 10²⁸. This is doped simultaneously with 5 x 10²² atoms per m³ of arsenic and 5 x 10²⁰ atoms per m³ of indium. Calculate the number of holes, given that $n_i = 1.5 \times 10^{16} \text{ m}^{-3}$.
 - (A) $4.54 \times 10^{9} \text{m}^{-3}$ (B) $4.95 \times 10^{22} \text{m}^{-3}$ (C) $1.5 \times 10^{16} \text{m}^{-3}$ (D) $5 \times 10^{28} \text{m}^{-3}$
- 40.Two charges $+5\mu C$ and $-5\mu C$ are placed 5 mm apart. Determine E at a point 10 cm from centre
on the positive charge side along the axial line.
(A) $4.5 \ge 10^5 \text{N/C}$
(C) $4.5 \ge 10^5 \text{N/C}$
(D) $4.5 \ge 10^{-5} \text{NC}$
- 41. If the Gaussian surface is so chosen that there are some charges inside and some outside then the electric field is due to
 - (A) Only inside charges (B) Only outside charges
 - (C) All the charges (D) Cannot determine
- 42. The following is a diagram showing the variation of E with r from centre of uniformly charge spherical shell of radius R

43. Net capacitance of 3 identical capacitor in series is $1\mu F$. What is the net capacitance in μF if connected in parallel?

(A)	3	(B)	6
(C)	9	(D)	12

44. An inductor of 5H carries a steady current of 2A. In what time if the current is made zero can a 40V self induced emf be produced in the inductor.

(A)	2s	(B)	1s
(C)	0.5s	(D)	0.25s

45. A cell of emf E and internal resistance r gives 0.5A with R=12 ohms and 0.25 with R = 25 ohms. Its internal resistance in ohms will be

(A)	0.5	(B)	1
(C)	2	(D)	3

Find current in the following circuit 2Ω 1Ω 4Ω 5Ω 2Ω (A) 1A (B) 2A (C) 3A (D) 4A 47. Two identical circular loops P and Q of radius r are placed in parallel planes with same axis at a distance of 2r. Find B at the midpoint of the axis between them if same current I flows through both loops. $\mu_0 I/2^{3/2} r$ (B) $\mu_0 2I/2^{3/2}r$ (A) (D) Cannot be determined $\mu_0 I/4\pi r$ (C) 48. A block of mass 4 kg is kept on a rough horizontal surface. The coefficient of static friction is 0.8. If a force of 19 N is applied on the block parallel to the floor, then the force of friction between the block and floor is: 19N (A) **(B)** 18 N (C) 16N (D) 9.8N 49. Current in a circuit falls steadily from 2A to 0A in 10 ms. Calculate L if emf induced is 200V. (A) 1H(B) 2H 3H (D) 4H (C) 50. Self inductance of the air core inductor increases from 0.01 mH to 10 mH on introducing an iron core. What is the relative permeability of the core used? (A) 500 (B) 800 900 1000 (C) (D) 51. Among the following, the most stable complex is $[Fe(H_2O)_6]^{3+}$ (B) $[Fe(NH_3)_6]^{3+}$ (A) $[Fe(C_2O_4)_3]^3$ $[Fe(Cl)_6]^3$ (C) (D) 52. Which is the correct coordination number (C.N) and oxidation number (O.N) of the transition metal atom in $[Co(NH_3)_2(H_2O)_2Cl_2]^+$? C.N=3, O.N=+1 (A) (B) C.N=4, O.N=+2C.N=6, O.N=+1 (D) C.N=6, O.N=+3 (C) In a solid, oxide ions are arranged in ccp, cations A occupy one sixth of the tetrahedral voids and 53. cation B occupy one third of the octahedral voids. The formula of the solid is: (A) ABO₃ $(B) A_3BO$ (C) AB₃O (D) $A_3B_3O_3$

46.

- 54. On mixing acetone to methanol some of the hydrogen bonds between methanol molecules break. Which of the following statements is correct about the above process?
 - At specific composition methanol acetone (A) mixture will form minimum boiling azeotrope and show positive deviation from Raoult's law
 - (C) At specific composition methanol acetone mixture will form minimum boiling azeotrope and show negative deviation from Raoult's law
- At specific composition methanol (B) acetone mixture will form maximum boiling azeotrope and show positive deviation from Raoult's law
- (D) At specific composition methanol acetone mixture will form maximum boiling azeotrope and show negative deviation from Raoult's law
- $K_{\rm H}$ value for argon, carbon dioxide, formaldehyde and methane gases are 40.39, 1.67, 1.83 X 10⁻⁵ 55 and 0.413, respectively. The correct arrangement of these gases in the order of their increasing solubility is: formaldehyde< carbon dioxide
 - (A) formaldehyde<methane<carbon (B) dioxide<argon (C)
 - <methane<argon argon<carbon dioxide< argon <methane <carbon dioxide (D) methane<formaldehyde <formaldehyde
- The number of faradays of electricity required for electrolytic conversion of the mole of 56 nitrobenzene to aniline is:
 - 3F (A) (B) 4F (C) 6F (D) 5F

57. The positive value of the standard electrode potential of Ag^+/Ag indicates that:

- This redox couple is a stronger reducing This redox couple is a stronger (B) (A) agent than H^+/H_2 couple oxidizing agent than H^+/H_2 couple (C) Ag can displace H₂ from acid (D) Ag can displace H_2 from base
- 58. Milk is refrigerated in order to slow the rate of decomposition by bacterial action. The decrease in reaction rate is due to:
 - A decrease in surface area (A)
 - A decrease in the fraction of particles (C) possessing sufficient energy
- (B) A decrease in \triangle H for the reaction
- The introduction of an alternative (D) pathway with greater activation energy.
- 59. Which of the following statements is not correct?
 - The rate of a reaction decreases with (A) passage of time as concentration of reactants decrease
 - (C) For a zero order reaction the concentration of reactants remains changed with passage of time
- **(B)** The instantaneous rate a reaction is same at any time during the reaction
- (D) The rate of a reaction decreases with increase in concentration of reactant (s)
- 60. Which of the following gases shows the lowest adsorption per gram of charcoal? The critical temperatures are given in parenthesis:
 - (A) H₂ (33K) (B) CH₄(190K)
 - (C) SO₂(630K) (D) $CO_2(304K)$

61.	 Freundlich adsorption isotherm is given by the exp statements are false? i. When 1/n=0, the adsorption is indepen ii. When n=0, the plot of x/m vs p graph iii. When 1/n=0, the adsorption is directly iv. When n=0, plot of x/m vs p is a curve (A) i and ii 	ression dent o is a lin propo (B)	n x/m=kp ^{1/n} . Which of the following f pressure. e parallel to x axis. ritional to pressure. ii and iy
	(C) i and iii	(D)	all are false
62.	In the extraction of chlorine by electrolysis of an at the following statements are true? i. $\triangle G^0$ for the overall reaction is positive ii. $\triangle G^0$ for the overall reaction is negative iii. E^0 for the overall reaction is positive iv. E^0 for the overall reaction is negative	queous ve ve	s solution of sodium chloride, which of
	(A) i and iv(C) ii and iii	(B) (D)	i and iii iii and iv
63.	Which of the following pairs of ions are isoelectron (A) NO_2^+ and NO_3^- (C) XeO_3^{2-} and PCl_3	nic and (B) (D)	l isostructural ? CIO_3^- and ICI_4^- CIO_3^- and SO_3^{2-}
64.	 Which of the following hydrides is the strongest re (A) NH₃ (C) AsH₃ 	ducing (B) (D)	g agent? PH ₃ SbH ₃
65.	Consider the reactions, i. Zn + Conc. HNO ₃ (hot) → Zn (N ii. Zn + dil. HNO ₃ (cold) → Zn (N Compounds X and Y are, respectively (A) N ₂ O, NO	$(O_3)_2 + (O_3)_2 - (B)$	$-X + H_2O$ + Y + H_2O NO ₂ , NO ₂
	$(C) \qquad N_2, N_2O$	(D)	NO_2 , NO
66.	When KMnO ₄ acts as an oxidizing agent in weakly manganese decreases by:	' alkali	ine medium, the oxidation number of
	(A) 1 (C) 3	(B) (D)	2 5
67.	Acidified potassium dichromate solution turns gree formation of:	en whe	en Na_2SO_3 is added to it due to the
	(A) $CrSO_4$ (C) CrO_4^{2-}	(B) (D)	$\begin{array}{c} Cr_2(SO_4)_3\\ Cr_2(SO_3)_3 \end{array}$
68.	The d-electron configurations of Cr^{2+} , Mn^{2+} , Fe^{2+} a Which one of the following complexes will exhibit numbers of Cr=24, Mn=25, Fe=26, Co=27)	nd Co ² minir	$^{2+}$ are d ⁴ , d ⁵ , d ⁶ and d ⁷ , respectively. num paramagnetic behavior? (atomic
	(A) $[Cr(H_2O)_6]^{2^+}$ (C) $[Fe(H_2O)_6]^{2^+}$	(B) (D)	$[Mn(H_2O)_6]^{2+}$ $[Co(H_2O)_6]^{2+}$
69.	When 2-Bromopentane is heated with potassium et	hoxid	e in ethanol, the major product obtained
	(A) 2-Ethoxypentane(C) Cis-Pent-2-ene	(B) (D)	Pent-1-ene Trans-Pent-2-ene

70.	Whick	h of the following undergoes nucleophilic s	ubstituti	on exclusively by S _N ¹ mechnism?
	(A)	Chloroethane	(B)	Isopropyl chloride
	(C)	Chlorobenzene	(D)	Benzyl chloride
71.	The n	umber of possible stereoisomers for CH ₃ CH	H=CHCH	H ₂ CH(Br)CH ₃ is:
	(A)	8	(B)	2
	(C)	4	(D)	6
72.	2-Met	thoxy-2-methylpropane on heating with HI	produce	s:
	(A)	Methanol and sec-propyl iodide	(B)	Methyl iodide and tert-butyl alcohol
	(C)	Methyl iodide and isobutene	(D)	Methanol and tet-butyl iodide
73.	The le (A) (C)	east acidic compound among the following o-Nitrophenol p-Nitrophenol	is: (B) (D)	m-Nitrophenol Phenol
74.	An al The k (A) (C)	kene C ₇ H ₁₄ on reductive ozonolysis gives a etone is: 2-Butanone 3-Pentanone	n aldehy (B) (D)	de with formula C_3H_6O and a ketone. 2-Pentanone Propanone
75.	The in Aceto (A) (C)	ncreasing order of the rate of addition of H0 one iii) Acetophenone iv) benzophenone i <ii <="" iii<="" iv<br="">iv<iii< i<="" ii<="" td=""><td>CN to the (B) (D)</td><td>e compounds i) Formaldehyde ii) iv< ii< iii < i iv< i< ii< iii</td></iii<></ii>	CN to the (B) (D)	e compounds i) Formaldehyde ii) iv< ii< iii < i iv< i< ii< iii
76.	The c	arboxylic acid that does not undergo Hell-V	/ohlard-/	Zelinsky reaction is:
	(A)	CH ₃ COOH	(B)	(CH ₃) ₂ CHCOOH
	(C)	CH ₃ CH ₂ CH ₂ COOH	(D)	(CH ₃) ₃ CCOOH
77.	C ₂ H	$I_5 NH_2 \xrightarrow{NaNO_2/HCl} X \xrightarrow{P/Br_2} Y$	$\xrightarrow{NH_3}$	\rightarrow Z.
	In the (A) (C)	above sequence, Z is: cyanoethane methanamine	(B) (D)	ethanamide ethanamine
78.	The a	ttachment of which of the following group	at para p	osition in aniline will raise the K_b
	(A)	−SO ₃ H	(B)	-OH
	(C)	−F	(D)	-Br
79.	Whick	h of the following is an example of globula:	r protein	?
	(A)	myosin	(B)	collagen
	(C)	keratin	(D)	haemoglobin
80.	Whick	h one of the following is synthesized in our	body by	y sun rays?
	(A)	Vitamin D	(B)	Vitamin B
	(C)	Vitamin K	(D)	Vitamin A
81.	Capro	lactum is the is the starting material for the	e synthes	is of
	(A)	Nylon-6	(B)	Nylon6,6
	(C)	Terylene	(D)	Nylon 10
82.	The s	pecies which can serve as an initiator for ca	tionic po	olymerization is
	(A)	Lithium aluminium hydride	(B)	Nitric acid
	(C)	Aluminium chloride	(D)	BuLi

83.	Aspirin is an: (A) analgesic (C) antimalarial	(B) antipyretic(D) Both analgesic and antipyretic		
84.	The equivalent mass of iron in the reaction $2Fe + 3Cl_2 \rightarrow 2FeCl_3$ is:			
	(A) Half of its atomic mass(C) Same as atomic mass	(B) One third of its atomic mass(D) One fourth of its atomic mass		
85.	Which of the following sets of quantum (A) $n=4$, $l=3$, $m=4$, $s=+1/2$ (C) $n=4$, $l=3$, $m=+1$, $s=+1/2$	numbers is correct for an electron in 4f subshell? (B) $n=4$, $l=3$, $m=-4$, $s=-1/2$ (D) $n=3$, $l=2$, $m=-2$, $s=+1/2$		
86.	The correct sequence of atomic radii is: (A) Na>Mg>Al>Si (C) Si>Al>Mg>Na	(B) Al>Si>Na>Mg(D) Si>Al>Na>Mg		
87.	In which of the following, the bond ang (A) NH ₃ (C) PCl ₃	e around the central atom is maximum? (B) NH_4^+ (D) SCl_2		
88.	Which of the following molecule does (A) NF ₃ (C) PF ₅	tot exist (B) NF_5 (D) N_2H_4		
89.	If helium is allowed to expand in vacuu(A) It is an inert gas(C) Its critical temp. is low	m, it liberates heat because (B) It is an ideal gas (D) It is a light gas		
90.	i) $H_2(g) + 1/2O_2(g) \rightarrow H_2O(I) + x KJ$ reactions, (A) $x > y$ (C) $x = y$	ii) $H_2(g) + 1/2O_2(g) \rightarrow H_2O(g) + y$ KJ; For the given t (B) $x < y$ (D) $x + y = 0$	two	
91.	If the bond dissociation energies of XY respectively and Δ_{f} H of XY is -200KJm (A) 400 KJmol ⁻¹ (C) 200 KJmol ⁻¹	(D) $X^{+}y^{-}0^{-1}$ X ₂ , Y ₂ (all diatomic molecules) are in the ratio 1:1:0.3 ol ⁻¹ , the bond dissociation energy of X ₂ will be: (B) 300 KJmol ⁻¹ (D) 100 KJmol ⁻¹	5,	
92.	 What will be the correct order of vapou among these compounds water has max (A) Water<ether<ethanol< li=""> (C) Ether<ethanol<water< li=""> </ethanol<water<></ether<ethanol<>	 pressure of water, ethanol and ether at 30^oC? Given the imum boiling point and ether has minimum boiling point (B) Water<ethanol<ether< li=""> (D) Ethanol<ether< li=""> </ether<></ethanol<ether<>	hat int.	
93.	 Which of the following will occur if a Constant temperature? (A) [H⁺] will decrease to 0.001M (C) Percentage ionization will increase 	.1M solution of a weak acid is diluted to 0.01M at (B) pH will decrease se (D) K _a will increase		
94.	Which of the following species involve (A) $MnO_4^2 \rightarrow MnO_4^-$ (C) $MnO_4^- \rightarrow MnO_2$	the transfer of $5N_A$ electrons per mole of it ? (B) $MnO_4^- \rightarrow Mn^{2+}$ (D) $CrO_4^{2-} \rightarrow Cr^{3+}$		
95.	30-volume hyderogen peroxide means: (A) 30% H ₂ O ₂ by volume	(B) $30g \text{ of } H_2O_2 \text{ solution containing } 1g$	of	
	(C) 1 cm ³ of solution liberates 30 cm gas at STP	of O_2 (D) 30 cm^3 of the solution contains one		

mole of H₂O₂ 96. The correct sequence of covalent character is represented by: LiCl<NaCl<BeCl₂ BeCl₂<LiCl<NaCl (A) (B) NaCl<LiCl< BeCl₂ BeCl₂<NaCl<LiCl (C) (D) 97. Which of the following is known as pyrene? (A) CCl_4 (B) CS_2 S₂Cl₂ Solid CO₂ (C) (D) 98. The most stable carbocation amongst the following is: $(CH_3)_2CH^+$ Ph_3C^+ (A) (B) (C) $CH_3CH_2^+$ (D) $CH_2 = CH - CH_2^+$ 99. The molecule that will have dipole moment is: (B) cis-2-Butene (A) 2,2-Dimethylpropane (C) trans-2-Butene (D) 2,2,3,3-Tetramethylbutane 100. Of the five isomeric hexanes, the isomer which can give two monochlorinated compound is: 2-Methylpentane (B) 2,2-Dimethylbutane (A) (C) 2,3-Dimethylbutane (D) n-Hexane 101. If the letters of the word SACHIN are arranged in all possible ways and these words are written out as in dictionary, then the word SACHIN appears at serial number (A) 601 600 (B) 603 (C) (D) 602 102. The number of ways of distributing 8 identical balls in 3 distinct boxes so that none of the boxes remain empty is (A) 5 (B) 21 3⁸ (D) ${}^{8}C_{3}$ (C) 103. The number of arrangements of the letters of the word BANANA in which the two N's do not appear adjacently is 40 (A) (B) 60 (C) 80 (D) 100 104. Number of divisors of the form 4n+2 (n>0) of the integer 240 is (A) 4 (B) 8 10 (D) 3 (C) 105. 6 men and 4 women are to be seated in a row so that no two women sit together. The number of ways they can be seated is (A) 604800 **(B)** 17280 120960 (D) 518400 (C) If the cube roots of unity are 1, ω , ω^3 , then the roots of the equation $(x-1)^3 + 8 = 0$ are 106. (A) $-1, -1 + 2 \omega, -1 - 2 \omega^2$ (B) -1, -1, -1 $-1.1-2 \oplus 1-2 \oplus^2$ (D) $-1, 1+2 \, \omega, 1+2 \, \omega^2$ (C) If z_1 and z_2 are two non-zero complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then arg $(z_1) - \arg(z_1) - \arg(z_2) = |z_1| + |z_2|$. 107. (z_2) is equal to $\frac{\pi}{2}$ $-\frac{\pi}{2}$ (A) **(B)** 1 (C) 0 (D)

108.	If arg (A) (C)	(z) < 0, then arg (-z) – arg (z) = π $-\pi/2$	(B) (D)	$-\pi$ $\pi/2$
109.	If ω is (A) (C)	an imaginary cube root of unity, then $(1+\infty-128 \ \infty)$ 128 ∞^2	(B) (D)	$\begin{array}{c} \text{quals} \\ -128 \ \varpi \\ -128 \ \varpi^2 \end{array}$
110.	The peand on	oints z1, z2, z3, z4 in the complex plane are t nly if	he ver	tices of a parallelogram taken in order if
	(A) (C)	z1 + z4 = z2 + z3 z1 + z2 = z3 + z4	(B) (D)	$z_1 + z_3 = z_2 + z_4$ None of these
111.	Let R 12}. T (A)	= {(3,3) (6,6) (9,9) (12,12), (6,12) (3,9) (3,12 The relation is Reflexive and transitive	2), (3,6 (B)	5)} be in a relation on the set A= {3, 6, 9, Reflexive only
	(C)	An equivalence relation	(D)	Reflexive and symmetric only
112.	If a re $(a+y)$,	al valued function $f(x)$ satisfies the functional where 'a' is a given constant and $f(0) = 1$, th $-f(x)$	l equa en f (2 (B)	ation $f(x-y) = f(x) f(y) - f(a-x) f$ 2a-x) is equal to f(x)
	(C)	f(x) + f(a-x)	(D) (D)	f(x)
113.	If the	graph of the function $f(x)$ is symmetrical abo	out the	line $x=2$, then
	(A)	f(x+2) = f(x-2)	(B)	f(2+x) = f(2-x)
	(C)	f(x) = f(-x)	(D)	f(x) = -f(-x)
114.	The fi	unction $f: R \to R$ defined by $f(x) = \sin x$ is		
	(A)	into	(B)	onto
115	(C) In		(D)	many-one
115.	in a co studer	onege of 300 students, every student reads 5 in the number of newspapers is	iewsp	apers and every newspaper is read by 60
	(A)	At least 30	(B)	At most 20
	(C)	Exactly 25	(D)	None of these
116.	The va	alue of a for which the sum of the squares of the least value is	the roo	ots of the equation $x^2 - (a - 2) x - a - 1 = 0$
	(A)	1	(B)	0
	(C)	3	(D)	2
117.	If the	roots of the equation $x^2 - bx + c = 0$ be two co	onsecu	tive integers, then $b^2 - 4c$ equals
	(A) (C)	-22	(В) (D)	5 1
118	(-) If (1-r) is a root of quadratic equation $x^2 + px + (1 - p)$	(-)	0 then the roots are
110.	(A)	0, 1	(B)	- 1, 1
	(C)	0, -1	(D)	- 1, 2
119.	The n	umber of real solutions of the equation $x^2 - 3 x$	x +2=	=0 is/are
	(\mathbf{A})	2	(B)	4
	(C)	1	(D)	3
120.	$\int df x^2 + (A)$	2ax + 10 - 3a > 0 for every real value of x, t	hen (P)	0 < 5
	(A) (C)	a < 5 -5 < a < 2	(D)	a > -5 2 < a < 5
	(-)		(2)	

12 | PCM A

121.	 The angle between two diagonals of a cube is (A) 45° (C) 90° 	(B) (D)	60° tan ⁻¹ 2 $\sqrt{2}$
122.	If the angle between two vectors $\vec{i} + \vec{k}$ and $\vec{i} - \vec{j} + \vec{k}$ (A) 2 (C) -2	- ak (B) (D)	is $\pi/3$, then the value of a is 4 0
123.	The scalar $\vec{A} \cdot (\vec{B} + \vec{C}) \times (\vec{A} + \vec{B} + \vec{C})$ equals (A) 0 (C) $[\vec{A} \ \vec{B} \vec{C}]$	(B) (D)	$\begin{bmatrix} \vec{A} \ \vec{B} \vec{C} \end{bmatrix} + \begin{bmatrix} \vec{B} \ \vec{C} \ \vec{A} \end{bmatrix}$ None of these
124.	The points with position vectors $60\hat{i} + 3\hat{i}, 40\hat{i} - 8\hat{i}$ (A) $a=-40$ (C) $a=20$	ĵ, aî - (B) (D)	 52ĵ are collinear if a=40 None of these
125.	The number of vectors of unit length perpendicular(A) one(C) three	to ve (B) (D)	ctors $\vec{a} = (0 \ 1, 1)$ and $\vec{b} = (1 \ 1, 0)$ is two infinite
126.	The angle between the lines $2x = 3y = -z$ and $6x = (A) = 0^{\circ}$ (C) 45°	= - y = (B) (D)	-4z is 90° 30°
127.	Distance between two parallel planes $2x + y + 2z =$ (A) $3/2$ (C) $7/2$	= 8 and (B) (D)	4 4x + 2y + 4z + 5 = 0 is 5/2 9/2
128.	The method of least squares dictates that we choose of deviations of the points from the line is:(A) Maximum(C) Zero	e regro (B) (D)	ession line where the sum of the square Minimum Positive
129.	If the value of any regression coefficient is zero, th(A) Qualitative(C) Dependent	en two (B) (D)	o variables are: Correlated Independent
130.	A process by which we estimate the value of dependent variables is called:(A) Correlation(C) Residual	(B) (D)	variable on the basis of one or more Regression Slope
131.	If $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, then $A^3 =$ (A) A (C) 3A	(B) (D)	2A 4A
132.	The value of $\begin{vmatrix} 1+x & 1 & 1\\ 1 & 1+y & 1\\ 1 & 1 & 1+z \end{vmatrix}$ is equal to	~	
133.	(A) $1+x+y+z$ (C) xyz If $A^2 - A + I = 0$, then the inverse of A is	(B) (D)	x+y+z xyz+xy+xz+yz
	(A) A (C) I–A	(B) (D)	A–I I

134.	The nu (A) (C)	umber of bijec 106 106 !	ctive function	is from a set A to i	itself w (B) (D)	when A contains 106 elements is 106^{3} 2^{106}
135.	The va	alue of 12	12 13 13 14 14 15	is		
	(A) (C)	1 -1	11 101		(B) (D)	0 67
136.	The m	nean deviation	of the data 3	, 10, 10, 4, 7, 10,	5 from	the mean is
	(\mathbf{A})	2			(B)	2.57
	(C)	3			(D)	3.75
137.	The st	andard deviati	ion of the dat	a 6, 5, 9, 13, 12, 8	8, 10 is	
	(A)	E2		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(B)	52
		$\frac{32}{7}$				7
	(\mathbf{C})				(D)	6
	(C)	V6			(D)	0
138.	Let a, of the	b, c, d, e be th observations a	ne observation a+k, b+k, c+l	ns with mean m an k, d+k, e+k is	nd stan	dard deviation s. The standard deviation
	(A)	ks			(B)	S
	(C)	S+K			(D)	S/K
139.	Coeffi 25, res	icients of varia spectively. Dif	ation of two of fference of th	distributions are 50 heir standard devia) and 6 tions i	60, and their arithmetic means are 30 and s
	(A)	2.5			(B)	1
	(C)	1.5			(D)	0
140.	Consi numbe	der the first 10 er, the variance) positive inte e of the num	egers. If we multip bers so obtained is	oly eac	h number by -1 and then add 1 to each
	(A)	8.25			(B)	6.50
	(C)	3.87			(D)	2.87
141.	For a	linear program	nming equation	ons, convex set of	equati	ions is included in the region of
	(A)	Feasible solu	itions		(B)	Disposed solutions
	(C)	Profit solutio	ons		(D)	Loss solutions
142.	Infeas	ibility means t	that the numb	per of solutions to	the lin	ear programming models that satisfies
	(A)	at least 1			(B)	0
	(C)	An infinite n	umber		(D)	At least 2
143.	A con	straint that do	es not affect	the feasible regior	$\frac{1}{(\mathbf{P})}$	Padundant constraint
	(A)	Standard con	ny constraint		(D) (D)	Slack constraint

144.	Consider the following LPP. Maximize $3x_1 + 8x_2$ subject to $2x_1 + 5x_2 \le 10$, $6x_1 + x_2 \le 6$, $x_1, x_2 \ge 0$. The optimal value of the function is				
	(A) 0	(B) 3			
	(C) $\frac{111}{7}$	(D) 16			
	/				
145.	For linear inequalities, solution set for a group (A)	of inequalities is classified as			
	(A) Concave set (C) Loss set	(B) Convex set (D) Profit set			
146.	Which of the following is unary operations?	(B) Multiplication			
	(C) Square root	(D) None of these			
–					
147.	If * is a binary operation in A then (A) A is closed under *	(B) A is not closed under *			
	(C) A is not closed under +	(D) A is closed under –			
1.40					
148.	(A) $Log_{10} 10 = 1$	(B) $\log(2+3) = \log(2 \times 3)$			
	(C) $Log_{10} 1 = 0$	(D) $\log(1+2+3) = \log 1 + \log 2 + \log 1$	og 3		
149	If $\log (a/b) + \log (b/a) = \log (a+b)$ then				
119.	(A) $a+b=1$	(B) $a-b=1$			
	(C) a=b	(D) $a^2 - b^2 = 1$			
150.	The value of e is				
	(A) 0	(B) 1 (D) 214			
	(C) 2./18	(D) 2.14			
151.	$1 + \sin x + \sin^2 x + \dots$ up to $\infty = 4 + 2\sqrt{3}, 0 < x < 1$	$\leq \Pi$ and $x \neq \frac{\pi}{2}$ then x =			
	(A) $\frac{\pi}{6}, \frac{\pi}{2}$	(B) $\frac{\pi^2}{2}, 5\frac{\pi}{6}$			
	(C) $2\frac{\pi}{3}, \frac{\pi}{6}$	(D) $\frac{3}{2}, 2\frac{9}{3}$			
	3 0	5 5			
152.	A cow is tied to a post by a rope. The cow move	is along the circular path always keeping the out 72° at the centre, the length of the ro	he rope		
	(A) 35 meters	(B) 22 meters	pc is		
	(C) 56 meters	(D) 45 meters			
153.	\int_{x}^{x}				
	If $f(x) = \int_{-1} t dt$, for any $x \ge 0$, $f(x) =$				
	(A) $\frac{1}{2}(1-x^2)$	(B) $1 - x^2$			
	(C) $\frac{1}{2}(1+r^2)$	(D) $1 + x^2$			
	2 (1 1 %)				

154.	The to (A)	otal of number of terms in the expansion of (x	$(B)^{10}$	$x^{00} + (x-y)^{100}$ after simplification is
	(\mathbf{R})	202	(D) (D)	100
155.	The r	naximum value of $\frac{\log x}{2}$ in (2, ∞) is		
	(A)	x 1	(B)	2
	(C)	e	(D)	e 1
				е
156.	The s	series $\frac{1}{2} + \frac{1}{5} + \frac{1}{2} + \frac{1}{2} + \dots \dots up$ to $n t$	erms	is equal to
	(A)	$n^{2\cdot 5}$ 5·8 8·11	(B)	1
		$\overline{4n+6}$		$\overline{6n+4}$
	(C)	$\frac{h}{6n+4}$	(D)	$\frac{n}{3n+7}$
157	t,	0n + 1		511 + 7
137.	$\lim_{x \to 1} \frac{u}{x}$	$\frac{\operatorname{an}(x-1)}{x-1}$ equals		
	(A)	$\frac{x-1}{2}$	(B)	1
	(\mathbf{C})	2	(D)	$\overline{2}_{1}$
	(C)	-2	(D)	$-\frac{1}{2}$
158		dy		2
130.	If x^n	$^{n}y^{n} = (x + y)^{m+n}$ then $\frac{dy}{dx}$ is equal to		
	(A)	$\frac{x+y}{y}$	(B)	xy
	(\mathbf{C})	xy	(D)	v
	(C)	0	(D)	$\frac{x}{x}$
159.	Ifai	$-sin^{-1}(t^2-1)$ and $y - sec^{-1}(\frac{1}{t^2-1})$ then $\frac{dy}{dx}$	is equa	l to
	(A)	$x = e^{-x} + e^{-x}$	(B)	У
	()	\overline{y}	(-)	$-\frac{1}{x}$
	(C)	$\frac{y}{z}$	(D)	$-\frac{x}{x}$
1.60		X	. 2	<i>y</i>
160.	Find	the sum of 1^{st} n terms of the series $\frac{1^2}{1}$	$+\frac{1^2}{1}$	$\frac{+2^2}{-2} + \frac{1^2 + 2^2 + 3^2}{-1} + \dots$
	(A)	n + 2 1	1 - (B)	+2 1+2+3 n(n+2)
		3		
	(C)	$\frac{n(n-2)}{2}$	(D)	n(n-2)
		3 π		6
161.	The 1	value of $\tan \frac{\pi}{8}$ is equal to		
	(A)	1	(B)	$\sqrt{2} + 1$
	(\mathbf{C})	2 1	(D)	1 1
		$\frac{1}{\sqrt{2}+1}$	(D)	$1 - \sqrt{2}$
		γ <u>μ</u> ι Ι		

162.	The s	volution for the differential equation $\frac{dy}{dy}$	$\frac{dx}{dx} + \frac{dx}{dx}$	c = 0 is
	(A)	$\frac{1}{n} + \frac{1}{r} = c$	(B)	$\log x \cdot \log y = c$
	(C)	y x x xy = c	(D)	x + y = c
163.	If PA	$A = \frac{1}{2}, PB = \frac{1}{4}, P(A \cup B) = \frac{5}{12}, then P(A \cup B) = \frac{5}{12}$	/ B)	=
	(A)	25 4 12	(B)	5
	(C)	$\frac{16}{16}$	(D)	$\frac{4}{2}$
164.	If (a	$(-2)x^2 + 9y^2 = 4$ represents rectangula	r hyp	erbola then a equals
	(A) (C)	0 9	(B) (D)	2 None of these
165.	If \sum	$n = 55$, then the value of $\sum n^2$ is equal	ıl to	
	(A)	385	(B)	506
166	(C)	1115	(D)	3025
100.	The 1	1^{th} term in expansion of $\left(x + \frac{1}{\sqrt{x}}\right)^{-1}$ is		
	(A)	999	(B)	1001
	(C)	<i>x</i> 1	(D)	$\frac{\frac{\chi}{\chi}}{1001}$
167.	$\int_{0}^{\frac{\pi}{2}} \frac{1}{si}$	$\frac{\sin^{1000}x dx}{n^{1000}x + \cos^{1000}x}$ is equal to		
	(A)	$\frac{1000}{\pi}$	(B)	$\frac{1}{\pi}$
	(C)	$\frac{1}{2}$	(D)	$\frac{\pi}{4}$
168.	$f e^x$: (A)	$x^{5} dx$ is $e^{x}[x^{5} + 5x^{4} + 20x^{3} + 60x^{2} + 120x + 120] + C$ $e^{x}[x^{5} - 5x^{4} + 20x^{3} - 60x^{2} + 120x - 120] + C$	(B) (D)	$e^{x}[x^{5} - 5x^{4} - 20x^{3} - 60x^{2} - 120x - 120] + C$ $e^{x}[x^{5} + 5x^{4} + 20x^{3} - 60x^{2} - 120x + 120] + C$
169.	(0)	$\sec x$ dr is aqual to	(D)	
	$\int \frac{1}{\sec(A)}$	$\frac{1}{x} + \tan x$	(B)	$\log(1 + \sec x) + C$
	(\mathbf{C})	$\sec x + \tan x + C.$	(D)	$\log \sin x + \log \cos x + C.$
170.	If $f(x)$	$x) + be^{ax} + ae^{bx}$, then $f''(0) =$	(D)).h
	(A) (C)	ab(a+b)	(B) (D)	ab
171.	The l	ength of the latus rectum of the parabo	$la 4y^2$	$x^{2} + 3x + 3y + 1 = 0$ is
	(A)	$\frac{4}{3}$	(B)	/
	(C)	12	(D)	$\frac{3}{4}$
				т

172.	The p	principal value of $\sin^{-1} \tan\left(-\frac{5\pi}{4}\right)$ is		
	(A)	<u>π</u>	(B)	<u></u>
	(\mathbf{C})	$\frac{4}{\pi}$	(D)	$\frac{4}{\pi}$
	(0)	$\overline{2}$	(D)	$-\frac{1}{2}$
173.	If y =	$= e^{m \sin^{-1}x}$, then $\frac{d^2y}{dx^2}$ at $x = 0$ is		
	(A)	dx^2	(B)	m^2
	(C)	$-m^{2}$	(D)	2m
174.	If y =	$= \sin(2 \sin^{-1}x)$, then it satisfies the diff	erent	ial equation
	(A)	$(1 - x^2)y_2 - xy_1 + 4y = 0.$	(B)	$(1+x^2)y_2 - xy_1 + 4y = 0.$
	(C)	$(1 - x^2)y_2 - xy_1 + y = 0.$	(D)	$(1+x^2)y_2 - xy_1 + 4y = 0.$
175.	The v	value of $\cos \left[2 \tan^{-1} \frac{1+x}{1-x} + \sin^{-1} \frac{1-x^2}{1+x^2} \right]$	is	
	(A)	$\sqrt{2}$	(B)	1
	(C)	0	(D)	-1
176.	The e	quation of the circle which touches the x-axis	and v	whose centre is (1,2), is
	(A)	$x^2 + y^2 - 2x + 4y + 1 = 0.$	(B)	$x^2 + y^2 - 2x - 4y + 1 = 0.$
	(C)	$x^2 + y^2 + 2x + 4y + 1 = 0.$	(D)	$x^2 + y^2 + 4x + 2y + 1 = 0.$
177.	The a	lifferential equation $y \frac{dy}{dx} + x = c$ repres	sents	
	(A)	A family of hyperbolas	(B)	A family of circles whose centres are on the y-axis.
	(C)	A family of parabolas	(D)	A family of circles whose centres are on the x-axis.
178.	A stor	ne is thrown vertically upwards and the heigh $+ 80t - 16t^2$ The stone reaches the maximum	t x ft r height	eached by the stone in t seconds is given
	(A)	2s	(B)	2.5s
	(C)	3s	(D)	1.5s
179.	The a	area of the region bounded by $y = 2x - x$	с² and	l the x - axis is
	(A)	8 — sg.units	(B)	4 — sq.units
	(C)	3 7	(D)	2
	(0)	$\frac{1}{3}$ sq. units	(D)	$\frac{1}{3}$ sq. units
180.	If f ($f(x) = \begin{cases} 2a - x, & -a < x < a \\ 3x - 2a, & a < x \end{cases} $ then which	h of th	e following is true
	(A) (C)	f(x) is discontinuous at $x = a$. $f(x)$ is differentiable at $x \ge a$.	(B) (D)	f(x) is not differentiable at $x = a$. f(x) is continuous at all $x < a$.
181.	A die	is tossed thrice. If getting an even number is	consid	lered as success, the variance of the
	(Δ)	bility distribution is	(\mathbf{R})	1
	(11)	$\frac{2}{4}$	(D)	$\frac{1}{2}$
	(C)	$\underline{\hat{1}}$	(D)	2
		4		3

182.	The co (A)	pordinates of the foot of the perpendicular drawn f $(9 \ 17)$	rom th (B)	e point (3,4) on the line $2x + y - 7 = 0$ is (1, 5)
	(C)	$\left(\overline{5}, \overline{5}\right)$ (-5, 1)	(D)	(1, -5)
183	The p	oint $(5 -7)$ lies outside the circle		
1001	(A)	$x^2 + y^2 - 8x = 0$	(B)	$x^2 + y^2 - 5x + 7y = 0$
	(C)	$x^2 + y^2 - 5x + 7y - 1 = 0$	(D)	$x^2 + y^2 - 8x + 7y - 2 = 0$
184.	If tan	$15^{\circ} = 2 - \sqrt{3}$, then 2 tan $1095^{\circ} + \cot 975^{\circ} + \tan 1095^{\circ}$	n (–19	95°) =
	(A)	$2 + \sqrt{3}$	(B)	$4 + 2\sqrt{3}$
	(C)	$4 - 2\sqrt{3}$	(D)	$2 - \sqrt{3}$
185.	The n	umber of circles touching the lines $x = 0, y =$	a and	$\mathbf{y} = \mathbf{b}$ is
	(A)	One	(B)	Two
	(C)	Four	(D)	Infinite
186.				$dv \sqrt{5} \frac{1}{3} d^2 v$
	The o	rder and degree of the differential equation	$1 + (\frac{3}{2})$	$\left[\frac{dy}{dx^2}\right] = \frac{dy}{dx^2}$ are respectively,
	(A)	1,5	(B)	2, 1
	(C)	2, 5	(D)	2, 3
187.	$x^{2n} - y$	y ²ⁿ is divisible by	(D)	
	(A)	x - y x + y	(D)	y – x None of these
100	(C) Mr V	1 + y	(E)	i_{a} V has an $200/$ shares if Mr. V also
100.	attend	Is Otherwise she has a 50% chance of attendi	ng If	I go to the meet and see Miss Y there
	then t	he probability that Mr. X is also there, is		
	(A)	24	(B)	25
	(\mathbf{C})	29 26	(\mathbf{D})	29 27
	(C)	$\frac{20}{29}$	(D)	$\frac{27}{29}$
189	c ³			25
107.		$\frac{\sqrt{4-x}}{\sqrt{4-x}}dx$		
	$J_1 \sqrt{2}$ (A)	$x + \sqrt{4} - x$	(B)	1
	(C)	3	(D)	2
190.	a	$\sin x - 1$		
	$\lim_{x \to 0} \frac{\pi}{h^2}$	$\frac{1}{\sin x - 1}$		
	(A)	$\log a$	(B)	$\log\left(\frac{a}{a}\right)$
		$\log b$		(b)
	(C)	1	(D)	0
191.	The v	alue of $\frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \dots \dots$ where C_1, C_3, C_5	a	re the binomial coefficients of order n,
	1S (A)	$2^{n+1} - 1$	(B)	$2^n - 1$
	(C)	$\frac{n+1}{2^{n+1}}$	(D)	$n+1 \\ 2^{n+1}+1$
		$\overline{n+1}$		$\overline{n+1}$

192.	The v	alue of $\binom{n}{r}$ + 2. $\binom{n}{r-1}$ + $\binom{n}{r-2}$, where	$\binom{n}{k}$ d	lenotes the binomial coefficient of order
	n, is (A)	$\binom{n}{2}$	(B)	$\binom{n+1}{2}$
	(C)	$\binom{n+2}{n}$	(D)	(r) None of these
193.	Which	r one of the following is possible?		
	(A)	$\cos\theta = \frac{7}{3}$	(B)	$\sin\theta = \frac{a^2 + b^2}{a^2 - b^2}, (a \neq b)$
	(C)	$\sec\theta = \frac{4}{5}$	(D)	$\tan \theta = 45$
194.	In the	expansion of $\left(x^2 - \frac{1}{3x}\right)^9$ the term indep	enden	t of x is
	(A)	T ₇	(B)	T_6
	(C)	T_8	(D)	Τ ₉
195.	<i>If x</i> =	$=e^{y+e^{y+\cdots\infty}}, x>0, then \frac{dy}{dx}$ is		
	(A)	<u>x</u>	(B)	1
	(\mathbf{C})	1 + x		$\frac{1}{x}$
	(C)	$\frac{1-x}{x}$	(D)	$\frac{1+x}{x}$
107	C	X		x
196.	e^{x}	$\left(\frac{1+\sin x}{1+\sin x}\right) dx$ is		
	J (A)	$\tan\left(\frac{x}{2}\right) + C$	(B)	$e^x \sin x + C$
	(C)	$e^x \tan\left(\frac{x}{2}\right) + C$	(D)	$e^x + C$
197.	The fi	unction $f(x) = [x]$, where [x] denotes greatest	intege	r function is continuous at
	(A)	-2	(B)	1.5
	(C)	4	(D)	1
198.	If the	arithmetic mean of two positive numbers a an	d b (a	>b) is twice their G.M., then a:b is
	(A)	$6 + \sqrt{7} : 6 - \sqrt{7}$	(B)	$2 + \sqrt{3} : 2 - \sqrt{3}$
	(C)	$5 + \sqrt{6} : 5 - \sqrt{6}$	(D)	None of these
199.	$\lim_{x\to 0} x$	$\sin(e^{1/x})$ is equal to		
	(A)	0	(B)	1
	(C)		(D)	Does not exist
200.	Differ	rential coefficient of e^{x^2} with respect to log	x² is	
	(A)	e^{x^2}	(B)	xe^{x^2}
	(C)	$x^2 e^{x^2}$	(D)	$2x^2e^{x^2}$

Sr.	Question
No.	

Among the following, the most stable complex is		
(A) $[Fe(H_2O)_6]^{3+}$	(B)	$[Fe(NH_3)_6]^{3+}$
(C) $[Fe(C_2O_4)_3]^3$	(D)	$[Fe(Cl)_6]^{3-1}$

1.

2. Which is the correct coordination number (C.N) and oxidation number (O.N) of the transition metal atom in $[Co(NH_3)_2(H_2O)_2Cl_2]^+$? C.N=4, O.N=+2

(A)	C.N=3, O.N=+1	(B)	C.N=4, O.N=+2
(C)	C.N=6, O.N=+1	(D)	C.N=6, O.N=+3

3. In a solid, oxide ions are arranged in ccp, cations A occupy one sixth of the tetrahedral voids and cation B occupy one third of the octahedral voids. The formula of the solid is:

	1.2		
(A)	ABO_3	(B)	A ₃ BO
$\langle \alpha \rangle$			

(C) AB₃O (D) $A_3B_3O_3$

4. On mixing acetone to methanol some of the hydrogen bonds between methanol molecules break. Which of the following statements is correct about the above process?

	0		1
(A)	At specific composition methanol acetone	(B)	At specific composition methanol
	mixture will form minimum boiling		acetone mixture will form maximum
	azeotrope and show positive deviation		boiling azeotrope and show positive
	from Raoult's law		deviation from Raoult's law
(C)	At specific composition methanol acetone	(D)	At specific composition methanol
	mixture will form minimum boiling		acetone mixture will form maximum
	azeotrope and show negative deviation		boiling azeotrope and show negative
	from Raoult's law		deviation from Raoult's law

 $K_{\rm H}$ value for argon, carbon dioxide, formaldehyde and methane gases are 40.39, 1.67, 1.83 X 10⁻⁵ 5. and 0.413, respectively. The correct arrangement of these gases in the order of their increasing solubility is:

- (A) formaldehyde<methane<carbon (B) formaldehyde< carbon dioxide dioxide<argon <methane<argon argon<carbon dioxide< argon <methane <carbon dioxide (C) (D) methane<formaldehyde <formaldehyde
- 6. The number of faradays of electricity required for electrolytic conversion of the mole of nitrobenzene to aniline is:

(A)	3F	(B)	4F
(C)	6F	(D)	5F

- 7. The positive value of the standard electrode potential of Ag^+/Ag indicates that:
 - This redox couple is a stronger reducing (B) This redox couple is a stronger oxidizing agent than H⁺/H₂ couple Ag can displace H_2 from base
 - (C) Ag can displace H_2 from acid (D)

A decrease in the fraction of particles

- 8. Milk is refrigerated in order to slow the rate of decomposition by bacterial action. The decrease in reaction rate is due to:
 - A decrease in surface area (A)

possessing sufficient energy

agent than H^+/H_2 couple

(A)

(C)

- A decrease in \triangle H for the reaction (B)
- The introduction of an alternative (D) pathway with greater activation energy.

- 9. Which of the following statements is not correct?
 - (A) The rate of a reaction decreases with passage of time as concentration of reactants decrease
 - (C) For a zero order reaction the concentration of reactants remains changed with passage of time
- (B) The instantaneous rate a reaction is same at any time during the reaction
- (D) The rate of a reaction decreases with increase in concentration of reactant (s)
- 10. Which of the following gases shows the lowest adsorption per gram of charcoal? The critical temperatures are given in parenthesis:
 - (A) $H_2(33K)$ (B) $CH_4(190K)$
 - (C) $SO_2(630K)$ (D) $CO_2(304K)$
- 11. Freundlich adsorption isotherm is given by the expression $x/m=kp^{1/n}$. Which of the following statements are false?
 - i. When 1/n=0, the adsorption is independent of pressure.
 - ii. When n=0, the plot of x/m vs p graph is a line parallel to x axis.
 - iii. When 1/n=0, the adsorption is directly proportional to pressure.
 - iv. When n=0, plot of x/m vs p is a curve
 - (A) i and ii (B) ii and iv
 - (C) i and iii (D) all are false
- 12. In the extraction of chlorine by electrolysis of an aqueous solution of sodium chloride, which of the following statements are true?
 - i. $\triangle G^0$ for the overall reaction is positive
 - ii. $\triangle G^0$ for the overall reaction is negative
 - iii. E^0 for the overall reaction is positive
 - iv. E^0 for the overall reaction is negative
 - (A) i and iv(B) i and iii(C) ii and iii(D) iii and iv
- 13. Which of the following pairs of ions are isoelectronic and isostructural?
 - (A) NO_2^+ and NO_3^- (B) CIO_3^- and ICl_4^- (D) CIO_3^- and SO_3^{2-}
- 14. Which of the following hydrides is the strongest reducing agent?
 - $\begin{array}{cccc} (A) & NH_3 & & (B) & PH_3 \\ (C) & AsH_3 & & (D) & SbH_3 \end{array}$
- 15. Consider the reactions,
 - i. $Zn + Conc. HNO_3 (hot) \longrightarrow Zn (NO_3)_2 + X + H_2O$
 - ii. $Zn + dil. HNO_3 (cold) \longrightarrow Zn (NO_3)_2 + Y + H_2O$
 - $\begin{array}{c} Compounds \ X \ and \ Y \ are, \ respectively \\ (A) \quad N_2O, \ NO \\ (C) \quad N_2, \ N_2O \\ \end{array} \begin{array}{c} (B) \quad NO_2, \ NO_2 \\ (D) \quad NO_2, \ NO \\ \end{array}$
- 16. When KMnO₄ acts as an oxidizing agent in weakly alkaline medium, the oxidation number of manganese decreases by:

Buildse acciences of .						
A)	1	(B)	2			
C)	3	(D)	5			

17. Acidified potassium dichromate solution turns green when Na₂SO₃ is added to it due to the formation of:

(A)	CrSO ₄	(B)	$Cr_2(SO_4)_3$
(C)	$\operatorname{CrO_4^{2-}}$	(D)	$Cr_2(SO_3)_3$

18.	The d-electron configurations of Cr^{2+} , Mn^{2+} , Fe^{2+} and Co^{2+} are d^4 , d^5 , d^6 and d^7 , respectively. Which one of the following complexes will exhibit minimum paramagnetic behavior? (atomic numbers of Cr=24, Mn=25, Fe=26, Co=27)			
	(A) $[Cr(H_2O)_6]^{2^+}$ (C) $[Fe(H_2O)_6]^{2^+}$	(B) $[Mn(H_2O)_6]^{2+}$ (D) $[Co(H_2O)_6]^{2+}$		
19.	When 2-Bromopentane is heated with potassium	ethoxide in ethanol, the major product obtained		
	is: (A) 2-Ethoxypentane (C) Cis-Pent-2-ene	(B) Pent-1-ene(D) Trans-Pent-2-ene		
20.	Which of the following undergoes nucleophilic s(A) Chloroethane(C) Chlorobenzene	 ubstitution exclusively by S_N¹mechnism? (B) Isopropyl chloride (D) Benzyl chloride 		
21.	The number of possible stereoisomers for CH ₃ CH (A) 8 (C) 4	$\begin{array}{cc} \text{H=CHCH}_2\text{CH(Br)CH}_3 \text{ is:} \\ \text{(B)} & 2 \\ \text{(D)} & 6 \end{array}$		
22.	2-Methoxy-2-methylpropane on heating with HI(A) Methanol and sec-propyl iodide(C) Methyl iodide and isobutene	produces: (B) Methyl iodide and tert-butyl alcohol (D) Methanol and tet-butyl iodide		
23.	The least acidic compound among the following(A) o-Nitrophenol(C) p-Nitrophenol	is: (B) m-Nitrophenol (D) Phenol		
24.	An alkene C_7H_{14} on reductive ozonolysis gives as The ketone is:	n aldehyde with formula C_3H_6O and a ketone.		
	(A) 2-Butanone(C) 3-Pentanone	(B) 2-Pentanone(D) Propanone		
25.	The increasing order of the rate of addition of HC Acetone iii) Acetophenone iv) benzophenone	CN to the compounds i) Formaldehyde ii)		
	(A) $i < ii < iii < iv$ (C) $iv < iii < ii < i$	(B) $iv < ii < iii < i$ (D) $iv < i < ii < iii$		
26.	The carboxylic acid that does not undergo Hell-V	ohlard-Zelinsky reaction is:		
	(A) CH_3COOH (C) $CH_3CH_2CH_2COOH$	(B) $(CH_3)_2CHCOOH$ (D) $(CH_3)_3CCOOH$		
27.	$C_2H_5NH_2 \xrightarrow{NaNO_2/HCl} X \xrightarrow{P/Br_2} Y$	$\xrightarrow{NH_3} Z.$		
	In the above sequence, Z is: (A) cyanoethane (C) methanamine	(B) ethanamide(D) ethanamine		
28.	The attachment of which of the following group	at para position in aniline will raise the $K_{\rm b}$		
	value?			
	(A) $-5U_3H$ (C) $-F$			
29.	Which of the following is an example of globular	protein?		
	(A) myosin(C) keratin	(B) collagen(D) Haemoglobin		

30.	Which (A) (C)	h one of the following is synthesized in our b Vitamin D Vitamin K	ody by (B) (D)	/ sun rays? Vitamin B Vitamin A
31.	Capro	plactum is the is the starting material for the s	ynthes	sis of
	(A) (C)	Nylon-6 Terylene	(B) (D)	Nylon6,6 Nylon 10
32.	The s (A) (C)	pecies which can serve as an initiator for cati Lithium aluminium hydride Aluminium chloride	onic p (B) (D)	olymerization is Nitric acid BuLi
33.	Aspir (A) (C)	in is an: analgesic antimalarial	(B) (D)	antipyretic Both analgesic and antipyretic
34.	The e (A) (C)	equivalent mass of iron in the reaction 2Fe + 3 Half of its atomic mass Same as atomic mass	$BCl_2 \rightarrow (B)$ (D)	 2FeCl₃ is: One third of its atomic mass One fourth of its atomic mass
35.	Whick (A) (C)	h of the following sets of quantum numbers is n=4, l=3, m=4, s = $+1/2$ n=4, l=3, m=+1, s = $+1/2$	s corre (B) (D)	ect for an electron in 4f subshell? n=4, $l=3$, $m=-4$, $s = -1/2n=3$, $l=2$, $m=-2$, $s = +1/2$
36.	The c (A) (C)	orrect sequence of atomic radii is: Na>Mg>Al>Si Si>Al>Mg>Na	(B) (D)	Al>Si>Na>Mg Si>Al>Na>Mg
37.	In wh (A) (C)	ich of the following, the bond angle around t NH ₃ PCl ₃	he cen (B) (D)	tral atom is maximum? NH4 ⁺ SCl2
38.	Whick (A) (C)	h of the following molecule does not exist NF ₃ PF ₅	(B) (D)	NF_5 N_2H_4
39.	If hel (A) (C)	ium is allowed to expand in vacuum, it libera It is an inert gas Its critical temp. is low	tes hea (B) (D)	at because It is an ideal gas It is a light gas
40.	i) H ₂ (reacti (A) (C)	$(g) + 1/2O_2(g) \rightarrow H_2O(I) + x KJ$ ii) $H_2(g) + ons,$ x > y x = y	1/2O ₂ (B) (D)	$(g) \rightarrow H_2O(g) + y \text{ KJ}$; For the given two x < y x + y = 0
41.	If the respective (A) (C)	bond dissociation energies of XY, X_2 , Y_2 (all ctively and $\Delta_f H$ of XY is -200KJmol ⁻¹ , the bo 400 KJmol ⁻¹ 200 KJmol ⁻¹	l diato nd dis (B) (D)	mic molecules) are in the ratio 1:1:0.5, sociation energy of X_2 will be: 300 KJmol ⁻¹ 100 KJmol ⁻¹
42.	What amon	will be the correct order of vapour pressure of g these compounds water has maximum boili	of wate ing poi	er, ethanol and ether at 30 ⁰ C? Given that int and ether has minimum boiling point.
	(A)	Water <ether<ethanol< td=""><td>(B)</td><td>Water<ethanol<ether< td=""></ethanol<ether<></td></ether<ethanol<>	(B)	Water <ethanol<ether< td=""></ethanol<ether<>
	(C)	Ether <ethanol<water< td=""><td>(D)</td><td>Ethanol<ether<water< td=""></ether<water<></td></ethanol<water<>	(D)	Ethanol <ether<water< td=""></ether<water<>

43.	Which of the following will occur if a 0.1M solution of a weak acid is diluted to 0.01M at constant temperature?			
	 (A) [H⁺] will decrease to 0.001M (C) Percentage ionization will increase 	(B) (D)	pH will decrease K _a will increase	
44.	Which of the following species involves the transf	fer of 5	N_A electrons per mole of it ?	
	(A) $MnO_4^2 \rightarrow MnO_4^2$ (C) $MnO_4^2 \rightarrow MnO_4$	(B) (D)	$MnO_4^- \rightarrow Mn^{2+}$ $CrO_4^{2-} \rightarrow Cr^{3+}$	
15	30-volume hyderogen perovide means:	(D)		
чЈ.	(A) 30% H ₂ O ₂ by volume	(B)	$30g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of }$	
	(C) 1 cm ³ of solution liberates 30 cm ³ of O_2 gas at STP	(D)	30 cm^3 of the solution contains one mole of H_2O_2	
46.	The correct sequence of covalent character is repr	esented	l by:	
	(A) $LiCl < NaCl < BeCl_2$ (C) $NaCl < LiCl < BeCl_2$	(B) (D)	BeCl ₂ <licl<nacl BeCl₂<nacl<licl< td=""></nacl<licl<></licl<nacl 	
47.	Which of the following is known as pyrene?			
	$ \begin{array}{ccc} (A) & CCl_4 \\ (C) & S_2Cl_2 \end{array} $	(B) (D)	CS_2 Solid CO ₂	
18	(C) S_2C_1	σis [.]		
10.	(A) $(CH_3)_2CH^+$	(B)	Ph_3C^+	
	(C) $CH_3CH_2^+$	(D)	$CH_2 = CH - CH_2^+$	
49.	The molecule that will have dipole moment is: (A) -22 Dimethylpropene	(D)	aia 2 Dutana	
	(C) trans-2-Butene	(D)	2,2,3,3-Tetramethylbutane	
50.	Of the five isomeric hexanes, the isomer which ca	n give	two monochlorinated compound is:	
	(A) 2-Methylpentane	(B)	2,2-Dimethylbutane	
51	(C) 2,5-Dimensional SACHIN are arranged in	(D)	n-riexane	
51.	out as in dictionary, then the word SACHIN are arranged in	an pos	erial number	
	(A) 601	(B)	600	
52	(C) 603	(D)		
52.	remain empty is	lis in 3	distinct boxes so that none of the boxes	
	(A) $5^{(A)}$	(B)	21 80	
52	$(C) 3^{3}$	(D)	C_3	
53.	appear adjacently is	vora B	ANANA in which the two N s do not	
	(A) 40	(B)	60	
	(C) 80	(D)	100	
54.	Number of divisors of the form $4n+2$ (n ≥ 0) of the (A) 4	(R)	r 240 is 8	
	(C) = 10	(D)	3	

55.	6 men	and 4 women are to be seated in a row so that	at no t	wo women sit together. The number of
	(A) (C)	604800 120960	(B) (D)	17280 518400
56.	If the (A) (C)	cube roots of unity are $1, \omega, \omega^3$, then the roots -1, $-1 + 2\omega$, $-1 - 2\omega^2$ -1, $1-2\omega$, $1-2\omega^2$	of the (B) (D)	e equation $(x-1)^3 + 8 = 0$ are -1, -1, -1 -1, 1+2 ω , 1+2 ω^2
57.	If z_1 at (z_2) is	nd z_2 are two non-zero complex numbers such equal to π	h that	$ z_1 + z_2 = z_1 + z_2 $, then arg (z_1) - arg π
	(A) (C)	$\overline{\frac{2}{0}}$	(B) (D)	$-\frac{1}{2}$
58.	If arg (A) (C)	(z) < 0, then arg (-z) – arg (z) = π $-\pi/2$	(B) (D)	$-\pi$ $\pi/2$
59.	If ω is (A) (C)	an imaginary cube root of unity, then $(1+\varpi-\alpha)$ 128 ϖ 128 ϖ^2	$(B)^{(D)}$	$\begin{array}{c} \text{[uals]}\\ -128 \ \varpi \\ -128 \ \varpi^2 \end{array}$
60.	The po and or	boints z1, z2, z3, z4 in the complex plane are t hly if $z^{-1} + z^{-2} + z^{-2}$	he ver	tices of a parallelogram taken in order if $-1 + -2 = -2 + -4$
	(A) (C)	$z_1 + z_4 = z_2 + z_3$ $z_1 + z_2 = z_3 + z_4$	(B) (D)	Z1 + Z3 = Z2 + Z4 None of these
61.	Let R 12}. T	$= \{(3,3) (6,6) (9,9) (12,12), (6,12) (3,9) (3,12)$ The relation is	2), (3,6	b)}be in a relation on the set $A = \{3, 6, 9, \dots\}$
	(A) (C)	Reflexive and transitive An equivalence relation	(B) (D)	Reflexive only Reflexive and symmetric only
62.	If a rea (a+y),	al valued function $f(x)$ satisfies the functional where 'a' is a given constant and $f(0) = 1$, the	ll equa en f (2	tion $f(x-y) = f(x) f(y) - f(a-x) f(a-x)$ a-x) is equal to
	(A) (C)	$ \begin{array}{l} -f(x) \\ f(x) + f(a-x) \end{array} $	(B) (D)	f (x) f (-x)
63.	If the (A) (C)	graph of the function $f(x)$ is symmetrical abo f(x+2) = f(x-2) f(x) = f(-x)	(B) (D)	line x=2, then f(2+x) = f(2-x) f(x) = -f(-x)
64.	The fu (A) (C)	unction $f: R \to R$ defined by $f(x) = \sin x$ is into one-one	(B) (D)	onto many-one
65.	In a co studer	ollege of 300 students, every student reads 5 nats. The number of newspapers is	newspa	apers and every newspaper is read by 60
	(A) (C)	At least 30 Exactly 25	(B) (D)	At most 20 None of these
66.	The va	alue of a for which the sum of the squares of the least value is	the roo	bts of the equation $x^2 - (a - 2) x - a - 1 = 0$
	(A) (C)	1 3	(B) (D)	0 2

67.	If the roots of the equation $x^2 - bx + c = 0$ be two of (A) -2 (C) 2	consecutive integers, then $b^2 - 4c$ equals (B) 3 (D) 1
68.	If $(1-p)$ is a root of quadratic equation $x^2 + px + (1 (A) 0, 1 (C) 0, -1$	(-p) = 0, then the roots are (B) - 1, 1 (D) - 1, 2
69.	The number of real solutions of the equation $x^2 - 3$ (A) 2 (C) 1	x + 2 = 0 is/are (B) 4 (D) 3
70.	If $x^2 + 2ax + 10 - 3a > 0$ for every real value of x, (A) $a > 5$ (C) $-5 < a < 2$	then (B) $a < -5$ (D) $2 < a < 5$
71.	 The angle between two diagonals of a cube is (A) 45° (C) 90° 	(B) 60° (D) $\tan^{-1}2\sqrt{2}$
72.	If the angle between two vectors $\vec{i} + \vec{k}$ and $\vec{i} - \vec{j} + \vec{k}$ (A) 2 (C) -2	+ $a\vec{k}$ is $\pi/3$, then the value of a is (B) 4 (D) 0
73.	The scalar $\vec{A} \cdot (\vec{B} + \vec{C}) \times (\vec{A} + \vec{B} + \vec{C})$ equals (A) 0 (C) $[\vec{A} \ \vec{B} \ \vec{C}]$	(B) $\begin{bmatrix} \vec{A} & \vec{B} & \vec{C} \end{bmatrix} + \begin{bmatrix} \vec{B} & \vec{C} & \vec{A} \end{bmatrix}$ (D) None of these
74.	The points with position vectors $60\hat{i} + 3\hat{i}, 40\hat{i} - 8\hat{i}$ (A) $a=-40$ (C) $a=20$	$\begin{array}{l} B\hat{j}, a\hat{i} - 52\hat{j} \text{are collinear if} \\ (B) a=40 \\ (D) \text{None of these} \end{array}$
75.	The number of vectors of unit length perpendicula(A) one(C) three	The result of the formula $\vec{a} = (0 \ 1, 1)$ and $\vec{b} = (1 \ 1, 0)$ is (B) two (D) infinite
76.	The angle between the lines $2x = 3y = -z$ and $6x = (A) = 0^{\circ}$ (C) 45°	$ \begin{array}{c} -y = -4z \text{ is} \\ (B) & 90^{\circ} \\ (D) & 30^{0} \end{array} $
77.	Distance between two parallel planes $2x + y + 2z = (A) = 3/2$ (C) $7/2$	= 8 and $4x + 2y + 4z + 5 = 0$ is (B) $5/2$ (D) $9/2$
78.	The method of least squares dictates that we choose of deviations of the points from the line is:(A) Maximum(C) Zero	(B) Minimum(D) Positive
79.	If the value of any regression coefficient is zero, th(A) Qualitative(C) Dependent	hen two variables are:(B) Correlated(D) Independent
80.	A process by which we estimate the value of dependent variables is called:(A) Correlation(C) Residual	ndent variable on the basis of one or more(B) Regression(D) Slope

81.	If $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, then $A^3 =$		
	(A) A	(B)	2A
	(C) 3A	(D)	4A
82.	The value of $\begin{vmatrix} 1+x & 1 & 1\\ 1 & 1+y & 1\\ 1 & 1 & 1+z \end{vmatrix}$ is equal to		
	$\begin{array}{ccc} (A) & 1+x+y+z \\ (C) & z=z \end{array}$	(B)	x+y+z
	(C) xyz	(D)	xyz+xy+xz+yz
83.	If $A^2 - A + I = 0$, then the inverse of A is		
	(A) A	(B)	A–I
	(C) I-A	(D)	I
84.	The number of bijective functions from a set A to i	tself w	when A contains 106 elements is
	(A) 106	(B)	106 ³
	(C) 106 !	(D)	2 ¹⁰⁶
85.	The value of $\begin{bmatrix} 11 & 12 & 13 \\ 12 & 12 & 14 \end{bmatrix}$ is		
	13 14 15		
	(A) 1	(B)	0
	(C) -1	(D)	67
86.	The mean deviation of the data 3, 10, 10, 4, 7, 10, 5	5 from	the mean is
	(A) 2	(B)	2.57
	(C) 3	(D)	3.75
87	The standard deviation of the data 6 5 9 13 12 8	10 is	
011	(A) [72]	(B)	52
	52		7
	$\sqrt{\frac{1}{2}}$		
	(C) $\sqrt{6}$	(D)	6
88.	Let a, b, c, d, e be the observations with mean m an of the observations a+k, b+k, c+k, d+k, e+k is	ıd stan	dard deviation s. The standard deviation
	(A) ks	(B)	S
	(C) $s+k$	(D)	s/k
89.	Coefficients of variation of two distributions are 50 25, respectively. Difference of their standard devia) and 6 tions i	50, and their arithmetic means are 30 and s
	(A) 2.5	(B)	
	(C) 1.5	(D)	0
90.	Consider the first 10 positive integers. If we multip number, the variance of the numbers so obtained is	ly eac	h number by -1 and then add 1 to each
	(A) 8.25	(B)	6.50
	(C) 3.87	(D)	2.87

91.	For a (A) (C)	linear programming equations, convex set of Feasible solutions Profit solutions	equati (B) (D)	ions is included in the region of Disposed solutions Loss solutions
92.	Infeas all co	sibility means that the number of solutions to nstraints is	the lin	near programming models that satisfies
	(A) (C)	at least 1 An infinite number	(B) (D)	0 At least 2
93.	A con (A)	straint that does not affect the feasible region Non-negativity constraint	is a (B)	Redundant constraint
	(C)	Standard constraint	(D)	Slack constraint
94.	Consi 0. The	der the following LPP. Maximize $3x_1 + 8x_2$ s e optimal value of the function is	ubject	to $2x_1 + 5x_2 \le 10, 6x_1 + x_2 \le 6, x_1, x_2 \ge$
	(A)	0	(B)	3
	(C)	$\frac{111}{7}$	(D)	10
95.	For li	near inequalities, solution set for a group of in	nequal	lities is classified as
	(A)	Concave set	(B)	Convex set
	(C)	Loss set	(D)	Profit set
96.	Whick	h of the following is unary operations?		
	(A)	Addition Square root	(B) (D)	Multiplication
	(0)	Square root	(D)	None of these
97.	If $*$ is	a binary operation in A then	(\mathbf{B})	A is not closed under *
	(\mathbf{C})	A is not closed under +	(D)	A is closed under –
98	Whiel	h of the following statements is not correct?		
<i>J</i> 0.	(A)	$Log_{10} = 1$	(B)	$Log (2 + 3) = log (2 \times 3)$
	(C)	$\mathrm{Log}_{10} \ 1 = 0$	(D)	Log (1+2+3) = log 1 + log 2 + log 3
99.	If log	$(a/b) + \log (b/a) = \log (a+b)$, then		
	(A)	a+b=1	(B)	a-b=1
	(C)	a=b	(D)	$a^2 - b^2 = 1$
100.	The v	alue of e is		
	(A)	0 2.718	(B)	1 2 14
	(C)	2./10	(D)	2.14
101.	1+ sir	$f(x) + \sin^2 x + \dots$ up to $\infty = 4 + 2\sqrt{3}, 0 < x < \Pi$	and x	$\neq \frac{\pi}{2}$ then x =
	(A)	$\frac{\pi}{6}, \frac{\pi}{3}$	(B)	$\frac{\pi}{3}, 5\frac{\pi}{6}$
	(C)	$2\frac{\pi}{3}, \frac{\pi}{6}$	(D)	$\frac{\pi}{3}, 2\frac{\pi}{3}$
102.	A cov	v is tied to a post by a rope. The cow moves a	long t	he circular path always keeping the rope
	tight.	If it describes 44 meters, when it has traced of	out 72°	at the centre, the length of the rope is
	(A) (C)	55 meters 56 meters	(D) (B)	45 meters
	$\langle \mathbf{v} \rangle$		(~)	

103.	If f($x) = \int_{-\infty}^{x} t dt, for any x \ge 0, f(x) =$		
	(A)	$\frac{1}{2}(1-x^2)$	(B)	$1 - x^2$
	(C)	$\frac{1}{2}(1+x^2)$	(D)	$1 + x^2$
104.	The to	otal of number of terms in the expansion of (x	$(x)^{10}$	$x^{0} + (x-y)^{100}$ after simplification is
	(A) (C)	50 202	(B) (D)	51 100
105.	The n	naximum value of $\frac{\log x}{r}$ in $(2,\infty)$ is		
	(A)	1	(B)	2
	(C)	e	(D)	e 1
				e
106.	The s	eries $\frac{1}{2\cdot 5} + \frac{1}{5\cdot 8} + \frac{1}{8\cdot 11} + \dots \dots up$ to n t	erms	is equal to
	(A)	$\frac{n}{4\pi + 6}$	(B)	1
	(C)	$\frac{4n+6}{n}$	(D)	6n+4
107		6n + 4		3 <i>n</i> + 7
107.	$\lim_{x \to 1} \frac{ta}{-}$	$\frac{\ln(x^2-1)}{x-1}$ equals		
	(A)	2	(B)	$\frac{1}{2}$
	(C)	-2	(D)	$\frac{2}{-\frac{1}{2}}$
108.	If x ^m	$dy^n = (x + y)^{m+n}$ then $\frac{dy}{dy}$ is equal to		
	(A)	$\frac{x+y}{x+y}$ dx	(B)	xy
	(C)	xy 0	(D)	<u>y</u>
100		(1) dy		x
109.	If $y =$	$= e^{\sin^{-1}(t^2 - 1)} and x = e^{\sec^{-1}(\frac{1}{t^2 - 1}) then \frac{dy}{dx} i}$	s equa	l to V
	(A)	$\frac{x}{y}$	(D)	$-\frac{y}{x}$
	(C)	$\frac{y}{x}$	(D)	$-\frac{x}{y}$
110.		1^2	1 ² -	-2^2 , $1^2 + 2^2 + 3^2$
	Fina (A)	the sum of 1° n terms of the series $\frac{1}{1}$ + $n+2$	$-\frac{1}{(B)}$	$\frac{-2}{n(n+2)}$ + $\frac{1+2+3}{n(n+2)}$ +,
	(\mathbf{C})	$\frac{3}{n(n-2)}$		$\frac{3}{n(n-2)}$
	(C)	$\frac{n(n-2)}{3}$	(D)	$\frac{n(n-2)}{6}$

111.	The v	value of $\tan \frac{\pi}{8}$ is equal to		
	(A)	$\frac{1}{2}$	(B)	$\sqrt{2} + 1$
	(C)	$\frac{2}{\sqrt{2}+1}$	(D)	$1 - \sqrt{2}$
112.	The s	olution for the differential equation $\frac{dy}{dy}$	$\frac{dx}{dx} + \frac{dx}{dx}$	$\dot{s} = 0$ is
	(A)	$\frac{1}{v} + \frac{1}{r} = c$	(B)	$\log x \cdot \log y = c$
	(C)	xy = c	(D)	x + y = c
113.	If PA	$A = \frac{1}{2}, PB = \frac{1}{4}, P(A \cup B) = \frac{5}{12}, then P(A \cup B) = \frac{5}{12}$	/ B) =	=
	(A)	25 4 12	(B)	5
	(C)	16 16	(D)	4 2
		25		3
114.	If $(a (A))$	$-2)x^{2} + 9y^{2} = 4$ represents rectangula	r hyp	erbola then a equals 2
	(\mathbf{C})	9	(D) (D)	None of these
115.	If \sum	$n=55$, then the value of $\sum n^2$ is equal	l to	
	(A) (C)	385 1115	(B) (D)	506 3025
116.	(-)	$(1)^{14}$	(-)	
	The 1	1 th term in expansion of $\left(x + \frac{1}{\sqrt{x}}\right)$ is		1001
	(A)	<u></u>	(B)	$\frac{1001}{r}$
	(C)	1	(D)	$\frac{\hat{x}}{1001}$
117.	$\int_{-\pi}^{\pi}$	$\frac{\sin^{1000}x dx}{\sin^{1000}x + \cos^{1000}x}$ is equal to		
	J_0 St (A)	$\frac{1000x + \cos 1000x}{1000}$	(B)	1
	(C)	$\frac{\pi}{2}$	(D)	$\frac{\pi}{4}$
118.	$f e^x$ (A) (C)	$x^{5} dx is$ $e^{x}[x^{5} + 5x^{4} + 20x^{3} + 60x^{2} + 120x + 120] + C$ $e^{x}[x^{5} - 5x^{4} + 20x^{3} - 60x^{2} + 120x - 120] + C$	(B) (D)	$e^{x}[x^{5} - 5x^{4} - 20x^{3} - 60x^{2} - 120x - 120] + C$ $e^{x}[x^{5} + 5x^{4} + 20x^{3} - 60x^{2} - 120x + 120] + C$
119.	$\int -$	$\frac{\sec x}{\cos x}$ dr is equal to	(-)	
	J sec (A)	$x + \tan x$ $\tan x - \sec x + C.$	(B)	$\log\left(1 + \sec x\right) + C.$
	(C)	$\sec x + \tan x + C.$	(D)	$\log \sin x + \log \cos x + C.$
120.	If f(x)	$x) + be^{ax} + ae^{bx}$, then $f''(0) =$	(P)	2ah
	(A) (C)	ab(a+b)	(D)	Ab

121.	The le (A)	ength of the latus rectum of the parabol $\frac{4}{2}$	la 4y² (B)	$x^{2} + 3x + 3y + 1 = 0$ is 7		
	(C)	3 12	(D)	$\frac{3}{4}$		
122.	Thon	rincipal value of $\sin^{-1} \tan\left(-\frac{5\pi}{3}\right)$ is				
	(Δ)	π	(B)	π		
	(11)	4	(D)	$-\frac{1}{4}$		
	(C)	$\frac{\pi}{2}$	(D)	$-\frac{n}{2}$		
123.	If y =	$e^{m \sin^{-1}x}$, then $\frac{d^2y}{dx^2}$ at $x = 0$ is		-		
	(A)	m	(B)	m^2		
	(C)	$-m^{2}$	(D)	2 <i>m</i>		
124.	If $y =$	If $y = \sin(2 \sin^{-1} x)$, then it satisfies the differential equation				
	(A) (C)	$(1 - x^{2})y_{2} - xy_{1} + 4y = 0.$ (1 - x ²)y ₂ - xy ₁ + y = 0	(D)	(1 + x2)y2 - xy1 + 4y = 0. (1 + x ²)y ₂ - xy ₁ + 4y = 0		
125	(0)	$\begin{pmatrix} 1 & x \end{pmatrix}_{2}^{2} x_{31}^{-1} = 0.$	1	$(1+x)y_2 xy_1 + 1y = 0.$		
123.	The v	alue of $\cos \left[2 \tan^{-1} \frac{1+x}{1-x} + \sin^{-1} \frac{1-x}{1+x^2} \right]$	is			
	(A)	$\sqrt{2}$	(B)	1		
10 ((C)		(D)			
126.	The equation (A)	quation of the circle which touches the x-axis $x^2 + y^2 - 2x + 4y + 1 = 0$	and w (B)	whose centre is (1,2), is $r^2 + y^2 - 2r - 4y + 1 = 0$		
	(C)	$x^{2} + y^{2} + 2x + 4y + 1 = 0.$	(D)	$x^{2} + y^{2} + 4x + 2y + 1 = 0.$		
127.	The d	if ferential equation $y \frac{dy}{dt} + x = c$ repres	ents			
	(A)	A family of hyperbolas dx	(B)	A family of circles whose centres are		
	()		(-)	on the y-axis.		
	(C)	A family of parabolas	(D)	A family of circles whose centres are on the x-axis.		
128.	A stone is thrown vertically upwards and the height x ft reached by the stone in t seconds is given					
	by, x^+	$-80t - 16t^2$. The stone reaches the maximum l	height (B)	in 2.5s		
	(C)	3s	(D)	1.5s		
129.	The a	rea of the region bounded by $y = 2x - x$	² and	l the x – axis is		
	(A)	$\frac{8}{-sq.units}$	(B)	$\frac{4}{-sa.units}$		
	(C)	3 - 4 7	(D)	2		
	(0)	$\frac{1}{3}$ sq. units	(2)	$\frac{1}{3}$ sq. units		
130.	If f ($x) = \begin{cases} 2a - x, & -a < x < a \\ 3x - 2a, & a \le x \end{cases} $ then which	n of th	e following is true		
	(A)	f(x) is discontinuous at $x = a$.	(B)	f(x) is not differentiable at $x = a$.		
	(C)	$f(x)$ is differentiable at $x \ge a$.	(D)	f(x) is continuous at all $x < a$.		

A die is tossed thrice. If getting an even number is considered as success, the variance of the 131. probability distribution is

(A)	3	(B)	1
	4		2
(C)	1	(D)	2
	4		3

The coordinates of the foot of the perpendicular drawn from the point (3,4) on the line 2x + y - 7 = 0 is (A) $\left(\frac{9}{r}, \frac{17}{r}\right)$ (B) (1, 5) 132.

(C)
$$(-5, 1)$$
 (D) $(1, -5)$

133.	The p (A) (C)	point (5, -7) lies outside the circle $x^2 + y^2 - 8x = 0$ $x^2 + y^2 - 5x + 7y - 1 = 0$	(B) (D)	$x^{2} + y^{2} - 5x + 7y = 0$ $x^{2} + y^{2} - 8x + 7y - 2 = 0$
134.	If tan (A) (C)	$15^{\circ} = 2 - \sqrt{3}$, then 2 tan $1095^{\circ} + \cot 975^{\circ} + t$ 2 + $\sqrt{3}$ 4 - 2 $\sqrt{3}$	an (-1 (B) (D)	$95^{\circ}) = 4 + 2\sqrt{3} 2 - \sqrt{3}$
135.	The n (A) (C)	umber of circles touching the lines x = 0, y = One Four	a and (B) (D)	y = b is Two Infinite
136.	The c (A) (C)	order and degree of the differential equation 1, 5 2, 5	$ \begin{array}{c} 1 + \begin{pmatrix} a \\ b \\ c \\ B \end{pmatrix} \\ (D) \end{array} $	$ \frac{dy}{dx} \int_{-2}^{5} \int_{-2}^{\frac{1}{3}} = \frac{d^2y}{dx^2} \text{ are respectively,} $ 2, 1 2, 3
137.	$x^{2n} - \frac{1}{2}$ (A) (C)	y^{2n} is divisible by x - y x + y	(B) (D)	y – x None of these
138.	Mr. X attend then t (A) (C)	X has a 75% chance of attending the annual m ds. Otherwise she has a 50% chance of attend the probability that Mr. X is also there, is $\frac{24}{29}$ $\frac{26}{29}$	eet. M ing. If (B) (D)	This Y has an 80% chance, if Mr. X also I go to the meet and see Miss Y there, $\frac{25}{29}$ $\frac{27}{29}$
139.	$\int_{1}^{3} \frac{1}{\sqrt{2}}$ (A) (C)	$\frac{\sqrt{4-x}}{\sqrt{4-x}}dx$ $\frac{0}{3}$	(B) (D)	1 2
140.	$\lim_{\substack{x \to 0 \\ (A)}} \frac{a}{b}$	$\frac{\sin x - 1}{\sin x - 1}$ $\frac{\log a}{\log b}$	(B)	$\log\left(\frac{a}{b}\right)$
	(C)	1	(D)	0

also

141.	The v	alue of $\frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \dots \dots$ where C_1, C_3, C_5	a	are the binomial coefficients of order n,
	1S (A)	$2^{n+1} - 1$	(B)	$\frac{2^n - 1}{2^n - 1}$
	(C)	$n+1 2^{n+1}$	(D)	n+1 $2^{n+1}+1$
1.40		$\overline{n+1}$	(m)	n+1
142.	The v	alue of $\binom{n}{r} + 2 \cdot \binom{n}{r-1} + \binom{n}{r-2}$, where	$\binom{n}{k}$	denotes the binomial coefficient of order
	(A)	$\binom{n}{r}$	(B)	$\binom{n+1}{r}$
	(C)	$\binom{n+2}{r}$	(D)	None of these
143.	Whicl	n one of the following is possible?		
	(A)	$\cos\theta = \frac{7}{3}$	(B)	$\sin\theta = \frac{a^2 + b^2}{a^2 - b^2}, (a \neq b)$
	(C)	$\sec\theta = \frac{4}{5}$	(D)	$\tan \theta = 45$
144.	In the	expansion of $\left(x^2 - \frac{1}{2x}\right)^9$ the term indep	enden	t of x is
	(A)	T_7	(B)	T ₆
	(C)	T_8	(D)	T ₉
145.	If $x =$	$=e^{y+e^{y+\cdots\infty}}, x>0, then \frac{dy}{dx}$ is		
	(A)	$\frac{x}{1+x}$	(B)	1
	(C)	1 + x 1 - x	(D)	$x \\ 1 + x$
		x		x
146.	$\int e^x$	$\left(\frac{1+\sin x}{1+\cos x}\right) dx$ is		
	(A)	$\tan\left(\frac{x}{2}\right) + C$	(B)	$e^x \sin x + C$
	(C)	$e^x \tan\left(\frac{x}{2}\right) + C$	(D)	$e^x + C$
147.	The fi	unction $f(x) = [x]$, where [x] denotes greatest	intege	er function is continuous at
	(A)	-2	(B)	1.5
1.40	(C)		(D)	
148.	If the (A)	arithmetic mean of two positive numbers a ar $6 \pm \sqrt{7}$: 6 $\sqrt{7}$	ia b (a (B)	$(2+\sqrt{3}, 2)$ is twice their G.M., then a:b is
	(C)	$5 + \sqrt{6} : 5 - \sqrt{6}$	(D)	None of these
149.	lim <i>x</i>	$\sin(e^{1/x})$ is equal to		
	(A)	0	(B)	1
	(C)	$\frac{e}{2}$	(D)	Does not exist
150.	Differ	rential coefficient of e^{x^2} with respect to log	x² is	
	(A)	e^{x^2}	(B)	xe^{x^2}
	(C)	$x^2 e^{x^2}$	(D)	$2x^2e^{x^2}$

151. While walking on smooth surface one should take small steps to ensure

Large friction (A)

- Small friction (B)
- Larger normal force (C) (D) Smaller normal force
- 152. What happens to a vehicle travelling in an unbanked curved path if the friction between the road and tires suddenly disappears
 - (A) Moves along tangent (B) Moves radially in (C)
 - Moves along the curve Moves radially out (D)
- A ball of mass 0.2 kg strikes an obstacle and moves at 60° to its initial direction. If its speed 153. changes from 20m/s to 10m/s the magnitude of impulse received by the ball is -----Ns
 - (A) $2\sqrt{7}$
- (B) $2\sqrt{3}$
- (C) $2\sqrt{5}$ (D) $3\sqrt{2}$
- A spacecraft of mass 2000kg moving with 600 m/s suddenly explodes into two pieces. One piece 154. of mass 500 kg is stationary. The velocity of other part in m/s is 800
 - (A) 600 **(B)** 1500 (D) (C)

(C) 100N

(D) 80N

1000

A man of mass 40 kg is at rest between the walls. If co eff. of friction between man and wall is 156. 0.8, find the normal reaction exerted by wall on man (take g = 10 m/s/s)

(A) F/9 (B) 3F F (C) (D) F/3

159.	A ma	A man weighs 75 kg on the surface of earth. His weight on the geostationary satellite is					
	(A)	infinity	(B)	150kg			
	(C)	zero	(D)	/ 5/2 Kg			
160.	g at a	a depth of 1600 km inside the earth in m	n/s/s is	7.05			
	(A)	6.65	(B)	7.35			
	(C)	8.65	(D)	4.35			
161.	A block of mass 19 M is suspended by a string of length 1m. A bullet of mass M hits it and gets embedded in it. If the block completes the vertical circle the velocity of bullet in m/s is						
	(A)	140	(B)	$20\sqrt{19.6}$			
	(C)	$20\sqrt{9.8}$	(D)	20			
162.	A rut impa	ober ball falls from a height of 4m and roct is	ebounds to 1	.5m. The % loss of energy during the			
	(Â)	20	(B)	62.5			
	(C)	23	(D)	60			
163.	25 kg requi	; of sand is deposited each second on a c red to maintain the belt in motion is	conveyor bel	It moving at 10m/s. The extra power			
	(A)	2600W	(B)	250W			
	(C)	325W	(D)	2500W			
164.	A uni slippi	A uniform rod of mass M and length L standing vertically on a horizontal floor falls without slipping at the bottom. The moment of inertia will be					
	(A)	$ML^2/3$	(B)	$ML^2/6$			
	(C)	ML ⁻ /9	(D)	ML ² /12			
165.	If the (A)	velocity of C.M of a rolling body is V, $\sqrt{2}$ V	then velocit (B)	y of highest point in the body will be V			
	(C)	2V	(D)	$V/\sqrt{2}$			
166.	The a	ingular momentum of two rotating bodic	es are equal.	If the ratio of their M.I is 1:4, the ratio			
	(A)	1:2	(B)	2:1			
	(C)	1:4	(D)	4:1			
167.	The level of water in a tank is 5m. A hole 1 cm ² is made at the bottom. The rate of leakage in m ³ /s is (take $g = 10 \text{ m/s/s}$)						
	(A)	10-3	(B)	10 ⁻⁴			
	(C)	10	(D)	10 ⁻²			
168.	Two 3/5 th	blocks A and B float in water. A floats of its volume immersed. The ratio of the	with 1/4 th of eir densities	its volume immersed and B floats with is			
	(A)	5:12	(B)	12:5			
	(C)	3:20	(D)	20:3			
169.	The terminal velocity of a spherical ball of lead of radius R is V while falling through a viscous liquid varies with R such that						
	(A)	V/R is constant	(B)	VR is constant			
	(C)	V is constant	(D)	V/R^2 is constant			
107.	(A) (C)	l varies with R such that V/R is constant V is constant	(B) (D)	VR is constant V/R^2 is constant			
170.	A hydraulic press uses a piston of $100 \text{ cm}^2 \text{t}$ other piston that supports a mass of 2000 kg (A) 100 cm^2 (C) $2 \times 10^4 \text{ cm}^2$	o exert a force of 10^7 dynes on water. The area of the g is (take g = 10m/s/s) (B) 10^9 cm ² (D) 2×10^{10} cm ²					
-------	--	--	--	--	--	--	--
171.	When kerosene and coconut oil of co eff. of viscosity 0.002 and 0.0154 Ns/m ² are allowed through the same pipe, under same pressure difference and same time collects 1 lit of coconut oil. The volume of kerosene that flows is $(A) = 5.5 \text{ lit}$						
	(C) 7.7 lit	(D) 8.8 lit					
172.	There is a circular hole in metal plate. Whe(A) increased(C) unchanged	 n the plate is heated the radius of the hole becomes (B) decreased (D) depends on metal 					
173.	Specific heat of a substance depends on 1.1 given to substance (A) Only 1 is correct	Nature of substance. 2. Mass of substance. 3. Heat(B) Both 1 and 2 are correct(D) Only 1 and 2 are correct					
1 7 4	(C) All are correct	(D) Only I and 3 are correct					
174.	 In a give process dW=0, dq is <0 then for a (A) Temperature increases (C) Pressure increases 	gas (B) Volume decreases (D) Pressure decreases					
175.	The efficiency of carnot engine depends on(A) Working substance(C) Source temperature	(B) Sink temperature(D) Both B and C					
176.	A 200 turn coil of self inductance 30 mH ca with each turn of coil.	arries a current of 5 mA. Find the magnetic flux linked					
	(A) $7.5 \times 10^{-7} \text{Wb}$ (C) $3 \times 10^{-7} \text{Wb}$	(B) 1.6×10^{-7} Wb (D) 1.5×10^{-7} Wb					
177.	The instantaneous value of current in an AG	C circuit is I = 2 sin (100 π t + $\pi/3$) A. At what first					
	(A) $1/100 \text{ s}$	(B) 1/200 s					
	(C) $1/500 \text{ s}$	(D) 1 s					
178.	What in electric system represents force in (A) I	mechanical system ?					
	(C) $1/C$	$\begin{array}{c} (D) & 1 \\ (D) & q \end{array}$					
179.	A capacitor of 1 μ F is charged with 0.01C o (A) 30J (C) 50J	of electricity. How much energy is stored in it? (B) 40J (D) 60J					
180.	An electromagnetic wave is travelling in va a medium having relative electric and magn (A) $3/\sqrt{2} \times 10^8$ m/s	cuum with a speed of 3 x 10^8 m/s. Find the velocity in netic permeability 2 and 1, respectively. (B) 1.5×10^8 m/s					
	(C) $2 \times 10^8 \text{m/s}$	(D) No change					

181. Trace the path of a ray of light passing through a glass prism as shown in the figure. If the refractive index of glass is $\sqrt{3}$, find out the value of angle of emergence from prism.

- 189. The number of silicon atoms per m³ is 5 x 10²⁸. This is doped simultaneously with 5 x 10²² atoms per m³ of arsenic and 5 x 10²⁰ atoms per m³ of indium. Calculate the number of holes, given that $n_i = 1.5 \times 10^{16} \text{ m}^{-3}$. (A) $4.54 \times 10^9 \text{m}^{-3}$ (B) $4.95 \times 10^{22} \text{m}^{-3}$
 - (C) $1.5 \times 10^{16} \text{m}^{-3}$ (D) $5 \times 10^{28} \text{m}^{-3}$
- 190. Two charges $+5\mu C$ and $-5\mu C$ are placed 5 mm apart. Determine E at a point 10 cm from centre on the positive charge side along the axial line.
- 191. If the Gaussian surface is so chosen that there are some charges inside and some outside then the electric field is due to
 - (A) Only inside charges

(B) Only outside charges

(C) All the charges

- (D) Cannot determine
- 192. The following is a diagram showing the variation of E with r from centre of uniformly charge spherical shell of radius R

193. Net capacitance of 3 identical capacitor in series is $1\mu F$. What is the net capacitance in μF if connected in parallel?

(A)	3	(B)	6
(C)	9	(D)	12

- 194. An inductor of 5H carries a steady current of 2A. In what time if the current is made zero can a 40V self induced emf be produced in the inductor.
 - (A) 2s (B) 1s (C) 0.5s (D) 0.25s
- 195. A cell of emf E and internal resistance r gives 0.5A with R=12 ohms and 0.25 with R = 25 ohms. Its internal resistance in ohms will be
 - (A) 0.5 (B) 1 (C) 2 (D) 3

196.

Sr. No	Question			
1.	If the letters out as in die (A) 601 (C) 603	s of the word SACHIN are arranged in a ctionary, then the word SACHIN appear	ll pos s at se (B) (D)	sible ways and these words are written erial number 600 602
2.	The number remain emption $(A) = 5$ (C) = 3 ⁸	r of ways of distributing 8 identical balls	(B) (D)	distinct boxes so that none of the boxes $^{21}_{^{8}C_{2}}$
3.	The numbe appear adja (A) 40 (C) 80	r of arrangements of the letters of the wo cently is	(B) (B) (D)	ANANA in which the two N's do not 60 100
4.	Number of (A) 4 (C) 10	divisors of the form $4n+2$ (n ≥ 0) of the in	nteger (B) (D)	240 is 8 3
5.	6 men and 4 ways they c	4 women are to be seated in a row so that can be seated is	t no t	wo women sit together. The number of
	(A) 6048 (C) 1209	800 960	(B) (D)	17280 518400
6.	If the cube	roots of unity are $1, \omega, \omega^3$, then the roots	of the	e equation $(x-1)^3 + 8 = 0$ are
	(A) -1, - (C) -1, 1	$1 + 2 \omega, -1 - 2 \omega^{2}$ -2 $\omega, 1-2 \omega^{2}$	(B) (D)	-1, -1, -1 -1, 1+2 ω , 1+2 ω^2
7.	If z_1 and z_2 (z_2) is equal (A) π	are two non-zero complex numbers such l to	(B)	$ z_1 + z_2 = z_1 + z_2 $, then arg (z_1) – arg π
0	$(\mathbf{R}) \frac{1}{2} (\mathbf{C}) 0 0 0$		(D)	$\frac{1}{2}$
8.	If arg (z) < (A) π (C) $-\pi/2$	0, then $\arg(-z) - \arg(z) =$	(B) (D)	$-\pi$ $\pi/2$
9.	If ω is an in (A) 128 (C) 128	maginary cube root of unity, then $(1+\omega-\omega)^2$	$(B)^{(2)}$ (B) (D)	uals -128 ω -128 ω ²
10.	The points z_{and} only if (A) $z_1 + z_2$	z1, z2, z3, z4 in the complex plane are the z4 = z2+ z3	ne ver (B)	tices of a parallelogram taken in order if z1 + z3 = z2 + z4
	(C) z1 +	$z_2 = z_3 + z_4$	(D)	None of these
11.	Let $R = \{(3 \\ 12\}$. The re (A) Refl (C) An effective of the second sec	,3) (6,6) (9,9) (12,12), (6,12) (3,9) (3,12 lation is exive and transitive equivalence relation), (3,6 (B) (D)	5)} be in a relation on the set A= {3, 6, 9, Reflexive only Reflexive and symmetric only

12.	If a real valued function $f(x)$ satisfies the functional equation $f(x-y) = f(x) f(y) - f(a-x) f(a+x)$, where 'a' is a given constant and $f(0) = 1$, then $f(2a, x)$ is equal to			
	(a+y), where a is a given constant and $f(0) = 1$, in (A) $-f(x)$	(B) = f(x)		
	(C) $f(x) + f(a-x)$	(D) $f(-x)$		
13.	If the graph of the function $f(x)$ is symmetrical about the graph of the function $f(x)$ is symmetrical about the fun	but the line $x=2$, then		
	(A) $f(x+2) = f(x-2)$	(B) $f(2+x) = f(2-x)$		
	(C) $f(x) = f(-x)$	(D) $f(x) = -f(-x)$		
14.	The function $f: R \rightarrow R$ defined by $f(x) = \sin x$ is			
	(A) into	(B) onto		
	(C) one-one	(D) many-one		
15.	In a college of 300 students, every student reads 5 students. The number of newspapers is	newspapers and every newspaper is read by 60		
	(A) At least 30	(B) At most 20		
	(C) Exactly 25	(D) None of these		
16.	The value of a for which the sum of the squares of assume the least value is	the roots of the equation $x^2 - (a - 2) x - a - 1 = 0$		
	(A) 1	(B) 0		
	(C) 3	(D) 2		
17.	If the roots of the equation $x^2 - bx + c = 0$ be two c	onsecutive integers, then $b^2 - 4c$ equals		
	(A) - 2	(B) 3 (D) 1		
	(C) 2	(D) I		
18.	If (1-p) is a root of quadratic equation $x^2 + px + (1 - (A)) = 0$	(D) = 0, then the roots are		
	(A) $0, 1$ (C) $0, -1$	(B) $-1, 1$ (D) $-1, 2$		
10	The number of real solutions of the equation x^2 (1)	(b) 1, 2 $x_1 + 2 = 0$ is/ara		
19.	(A) 2	(B) = 4		
	(C) 1	(D) 3		
20.	If $x^2 + 2ax + 10 - 3a > 0$ for every real value of x. t	then		
	(A) $a > 5$	(B) $a < -5$		
	(C) $-5 < a < 2$	(D) $2 < a < 5$		
21.	The angle between two diagonals of a cube is			
	(A) 45°	(B) 60°		
	(C) 90°	(D) $\tan^{-1}2\sqrt{2}$		
22.	If the angle between two vectors $\vec{i} + \vec{k}$ and $\vec{i} - \vec{i} + \vec{k}$	- $a\vec{k}$ is $\pi/3$, then the value of a is		
	(A) 2	(B) 4		
	(C) -2	(D) 0		
23.	The scalar $\vec{A} \cdot (\vec{B} + \vec{C}) \times (\vec{A} + \vec{B} + \vec{C})$ equals			
	(A) 0	(B) $\begin{bmatrix} \vec{A} \ \vec{B} \ \vec{C} \end{bmatrix} + \begin{bmatrix} \vec{B} \ \vec{C} \ \vec{A} \end{bmatrix}$		
	(C) $\begin{bmatrix} \vec{A} \ \vec{B} \ \vec{C} \end{bmatrix}$	(D) None of these		
24	The points with position vectors $60^\circ \pm 2^\circ 40^\circ = 9$	$\hat{a}_{i} = 52\hat{i}_{i}$ are collinear if		
<i>∠</i> 1 .	(A) $a = -40$	(B) $a=40$		
	(C) $a=20$	(D) None of these		

25.	The number of vectors of unit length perpendicular(A) one(C) three	r to vectors $\vec{a} = (0 \ 1, \ 1)$ and $\vec{b} = (1 \ 1, \ 0)$ is (B) two (D) infinite
26.	The angle between the lines $2x = 3y = -z$ and $6x = (A) = 0^{\circ}$ (C) 45°	= -y = -4z is (B) 90° (D) 30°
27.	Distance between two parallel planes $2x + y + 2z =$ (A) $3/2$ (C) $7/2$	= 8 and $4x + 2y + 4z + 5 = 0$ is (B) $5/2$ (D) $9/2$
28.	The method of least squares dictates that we choos of deviations of the points from the line is:(A) Maximum(C) Zero	(B) Minimum(D) Positive
29.	If the value of any regression coefficient is zero, th (A) Qualitative (C) Dependent	nen two variables are: (B) Correlated (D) Independent
30.	A process by which we estimate the value of dependent variables is called:(A) Correlation(C) Residual	ndent variable on the basis of one or more(B) Regression(D) Slope
31.	If $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, then $A^3 =$ (A) A (C) 3A	(B) 2A(D) 4A
32.	The value of $\begin{vmatrix} 1+x & 1 & 1\\ 1 & 1+y & 1\\ 1 & 1 & 1+z \end{vmatrix}$ is equal to (A) $1+x+y+z$ (C) xyz	(B) x+y+z(D) xyz+xy+xz+yz
33.	If $A^2 - A + I = 0$, then the inverse of A is (A) A (C) I-A	(B) A–I (D) I
34.	The number of bijective functions from a set A to i (A) 106 (C) 106 !	itself when A contains 106 elements is (B) 106^{3} (D) 2^{106}
35.	The value of $\begin{vmatrix} 11 & 12 & 13 \\ 12 & 13 & 14 \\ 13 & 14 & 15 \end{vmatrix}$ is (A) 1 (C) -1	(B) 0 (D) 67
36.	The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 (A) 2 (C) 3	5 from the mean is (B) 2.57 (D) 3.75

37.	The sta (A)	and and deviation of the data 6, 5, 9, 13, 12, 8, $\sqrt{\frac{52}{7}}$	10 is (B)	<u>52</u> 7
	(C)	$\sqrt{6}$	(D)	6
38.	Let a, of the	b, c, d, e be the observations with mean m and observations a+k, b+k, c+k, d+k, e+k is	d stan	dard deviation s. The standard deviation
	(A) (C)	ks s+k	(B) (D)	s s/k
39.	Coeffi 25, res (A)	cients of variation of two distributions are 50 spectively. Difference of their standard deviat 2.5	and 6 ions is (B)	50, and their arithmetic means are 30 and s
	(C)	1.5	(D)	0
40.	Consid numbe	der the first 10 positive integers. If we multipler, the variance of the numbers so obtained is	ly eac	h number by -1 and then add 1 to each
	(A)	8.25	(B)	6.50 2.87
4.1	(C)	5.67	(D)	
41.	For a (A)	Feasible solutions	equati (B)	Disposed solutions
	(C)	Profit solutions	(D)	Loss solutions
42.	Infeasi all con	ibility means that the number of solutions to t astraints is	he lin	ear programming models that satisfies
	(A)	at least 1	(B)	0
	(C)	An infinite number	(D)	At least 2
43.	A cons	straint that does not affect the feasible region	is a	
	(A)	Non-negativity constraint	(B)	Redundant constraint
	(C)	Standard constraint	(D)	Slack constraint
44.	Consid 0 The	der the following LPP. Maximize $3x_1 + 8x_2$ su optimal value of the function is	ıbject	to $2x_1 + 5x_2 \le 10$, $6x_1 + x_2 \le 6$, $x_1, x_2 \ge$
	(A)	0	(B)	3
	(C)	<u>111</u>	(D)	16
4.5	Б 1'	7	1	··· • 1 ···· 1
45.	For $\lim_{(A)}$	Concave set	equal: (B)	Ities is classified as
	(C)	Loss set	(D)	Profit set
46.	Which	of the following is unary operations?		
	(A)	Addition	(B)	Multiplication
	(C)	Square root	(D)	None of these
47.	If * is	a binary operation in A then		
	(A)	A is closed under *	(B)	A is not closed under *
	(C)	A is not closed under +	(D)	A is closed under –

48.	Which of the following statements is not correct ? (A) $Log_{10} \ 10 = 1$ (C) $Log_{10} \ 1 = 0$	(B) (D)	Log $(2+3) = \log (2 \times 3)$ Log $(1+2+3) = \log 1 + \log 2 + \log 3$
49.	If $\log (a/b) + \log (b/a) = \log (a+b)$, then (A) $a+b=1$ (C) $a=b$	(B) (D)	a-b=1 $a^2-b^2=1$
50.	The value of e is (A) 0 (C) 2.718	(B) (D)	1 2.14
51.	1+ sin x + sin ² x + up to $\infty = 4 + 2\sqrt{3}, 0 < x < \Pi$ (A) $\frac{\pi}{6}, \frac{\pi}{3}$ (C) $2\frac{\pi}{3}, \frac{\pi}{6}$	[and x (B) (D)	$x \neq \frac{\pi}{2} \text{ then } x = \frac{\pi}{3}, 5\frac{\pi}{6}$ $\frac{\pi}{3}, 2\frac{\pi}{3}$
52.	 A cow is tied to a post by a rope. The cow moves a tight. If it describes 44 meters, when it has traced of (A) 35 meters (C) 56 meters 	along out 72 ⁶ (B) (D)	the circular path always keeping the rope of at the centre, the length of the rope is 22 meters 45 meters
53.	$If f(x) = \int_{-1}^{x} t dt, for any x \ge 0, f(x) =$ (A) $\frac{1}{2}(1-x^2)$ (C) $\frac{1}{2}(1+x^2)$	(B) (D)	$1 - x^2$ $1 + x^2$
54.	The total of number of terms in the expansion of (x (A) 50 (C) 202	(B) (B) (D)	$x^{100} + (x-y)^{100}$ after simplification is 51 100
55.	The maximum value of $\frac{\log x}{x}$ in $(2, \infty)$ is (A) 1 (C) e	(B) (D)	$\frac{2}{e}$ $\frac{1}{e}$
56.	The series $\frac{1}{2 \cdot 5} + \frac{1}{5 \cdot 8} + \frac{1}{8 \cdot 11} + \dots \dots up \text{ to } n$ (A) $\frac{n}{4n+6}$ (C) $\frac{n}{6n+4}$	terms (B) (D)	s is equal to $ \frac{\frac{1}{6n+4}}{\frac{3n+7}{3n+7}} $
57.	$\lim_{\substack{x \to 1 \\ (A)}} \frac{\tan(x^2 - 1)}{x - 1} equals$ (C) -2	(B) (D)	$\frac{\frac{1}{2}}{-\frac{1}{2}}$

58. If x^myⁿ = (x + y)^{m+n} then
$$\frac{dy}{dx}$$
 is equal to
(A) $\frac{x + y}{xy}$ (B) xy
(C) 0 (D) $\frac{y}{x}$
59. If y = e^{sin⁻¹(t²-1)} and x = e<sup>sec⁻¹(\frac{1}{t²-1}) then $\frac{dy}{dx}$ is equal to
(A) $\frac{x}{y}$ (B) $-\frac{y}{x}$
60. Find the sum of 1st n terms of the series $\frac{1^2}{1} + \frac{1^2 + 2^2}{1 + 2} + \frac{1^2 + 2^2 + 3^2}{1 + 2 + 3} + \dots$
(A) $\frac{n+2}{3}$ (B) $\frac{n(n+2)}{3}$
(C) $\frac{n(n-2)}{3}$ (D) $\frac{n(n-2)}{6}$
61. The value of tan $\frac{\pi}{8}$ is equal to
(A) $\frac{1}{2}$ (B) $\sqrt{2} + 1$
(C) $\frac{1}{\sqrt{2} + 1}$ (D) $1 - \sqrt{2}$
62. The solution for the differential equation $\frac{dy}{y} + \frac{dx}{x} = 0$ is
(A) $\frac{1}{y} + \frac{1}{x} = c$ (B) log x. log y = c
(C) xy = c
(D) x + y = c
63. If PA. = $\frac{1}{3}$, PB. = $\frac{1}{4}$, P(A ∪ B) = $\frac{5}{12}$, then P(A / B) =
(A) $\frac{25}{16}$ (D) $\frac{2}{3}$
64. If (a - 2)x² + 9y² = 4 represents rectangular hyperbola then a equals
(A) 0 (B) 2
(C) 9
(D) None of these
65. If $\sum_{n=55$, then the value of $\sum_{n^2} n^2$ is equal to
(A) 385
(C) 1115
(D) 3025</sup>

66.	6. The 11 th term in expansion of $\left(x + \frac{1}{\sqrt{x}}\right)^{14}$ is				
	(A)	999	(B)	1001	
	(C)	x 1	(D)	$\frac{\frac{x}{x}}{1001}$	
67.	$\int_0^{\frac{\pi}{2}} \frac{1}{si}$	$\frac{\sin^{1000}x dx}{\sin^{1000}x + \cos^{1000}x} \text{ is equal to}$			
	(A) (C)	$\frac{1000}{\pi}$	(B) (D)	$\frac{1}{\pi}{4}$	
68.	$f e^x$: (A)	$x^{5} dx is$ $e^{x}[x^{5} + 5x^{4} + 20x^{3} + 60x^{2} + 120x + 120] + C$ $e^{x}[x^{5} - 5x^{4} + 20x^{3} - 60x^{2} + 120x - 120] + C$	(B) (D)	$e^{x}[x^{5} - 5x^{4} - 20x^{3} - 60x^{2} - 120x - 120] + C$ $e^{x}[x^{5} + 5x^{4} + 20x^{3} - 60x^{2} - 120x + 120] + C$	
69.	$\int \frac{1}{\sec \alpha}$	$\frac{\sec x}{\exp(x)} = \frac{1}{2} \frac{1}{\exp(x)} \frac{1}{\exp(x$	(D)		
	(A) (C)	$\tan x - \sec x + C.$ $\sec x + \tan x + C.$	(B) (D)	$\log (1 + \sec x) + C.$ $\log \sin x + \log \cos x + C.$	
70.	If f(A)	$x) + be^{ax} + ae^{bx}, then f''(0) = 0$	(B)	2ab	
71.	(C) The l	ab(a + b) enath of the latus rectum of the narabo	(D)	$ab^{2} + 3x + 3y + 1 = 0$ is	
	(A)	$\frac{4}{-}$	(B)	7	
	(C)	3 12	(D)	$\frac{3}{4}$	
72.	The p	principal value of $\sin^{-1} \tan\left(-\frac{5\pi}{4}\right)$ is			
	(A)	$\frac{\pi}{4}$	(B)	$-\frac{\pi}{4}$	
	(C)	$\frac{4}{\pi}$	(D)	$-\frac{4\pi}{2}$	
73.	If y :	$= e^{m \sin^{-1}x}$, then $\frac{d^2y}{dx^2}$ at $x = 0$ is			
	(A) (C)	m $-m^2$	(B) (D)	m ² 2m	
74.	If y : (A) (C)	$= \sin(2 \sin^{-1}x), then it satisfies the diff(1 - x2)y2 - xy1 + 4y = 0.(1 - x2)y2 - xy1 + y = 0.$	erent (B) (D)	ial equation $(1 + x^2)y_2 - xy_1 + 4y = 0.$ $(1 + x^2)y_2 - xy_1 + 4y = 0.$	
75.	The 1	value of $\cos\left[2\tan^{-1}\frac{1+x}{1-x} + \sin^{-1}\frac{1-x^2}{1+x^2}\right]$	is		
	(A)	$\sqrt{2}$	(B)	1	
	(C)	0	(D)	-1	

76.	The equation of the circle which touches the x-axis and whose centre is (1,2), is						
	(A)	$x^2 + y^2 - 2x + 4y + 1 = 0.$	(B)	$x^2 + y^2 - 2x - 4y + 1 = 0.$			
	(C)	$x^2 + y^2 + 2x + 4y + 1 = 0.$	(D)	$x^2 + y^2 + 4x + 2y + 1 = 0.$			
77.	The d	if ferential equation $y \frac{dy}{dx} + x = c$ repres	ents				
	(A)	A family of hyperbolas	(B)	A family of circles whose centres are on the y-axis.			
	(C)	A family of parabolas	(D)	A family of circles whose centres are on the x-axis.			
78.	A stor	he is thrown vertically upwards and the height	t x ft r	eached by the stone in t seconds is given			
	by, x+	$80t - 16t^2$. The stone reaches the maximum	height	in			
	(A)	2s	(B)	2.5s			
	(C)	38	(D)	1.58			
79.	The a	rea of the region bounded by $y = 2x - x$	c^2 and	l the x – axis is			
	(A)	$\frac{8}{2}$ sq. units	(B)	$\frac{4}{2}$ sq. units			
	(\mathbf{C})	3 - 7	(D)	2			
	(0)	$\frac{1}{3}$ sq. units	(D)	$\frac{1}{3}$ sq. units			
80.	166((2a-x, -a < x < a) the marked	641.				
	<i>IJ J</i> (.	$a \le x$ then which $a \le x$	n of th	e following is true			
	(A)	f(x) is discontinuous at $x = a$.	(B)	f(x) is not differentiable at $x = a$.			
	(C)	$f(x)$ is differentiable at $x \ge a$.	(D)	f(x) is continuous at all $x < a$.			
81.	A die	is tossed thrice. If getting an even number is	consid	ered as success, the variance of the			
	(Λ)	3	(B)	1			
	(A)	$\frac{3}{4}$	(D)	$\frac{1}{2}$			
	(C)	1	(D)	2			
		$\overline{4}$		3			
82.	The co	ordinates of the foot of the perpendicular drawn f	rom the	e point $(3,4)$ on the line $2x + y - 7 = 0$ is			
	(A)	$\left(\frac{9}{7},\frac{17}{7}\right)$	(B)	(1, 5)			
	(\mathbf{C})	(5' 5) (-5 1)	(D)	(1 - 5)			
02	(C) The m	(-3, 1)	(D)	(1, 3)			
83.	(A)	$x^2 + y^2 - 8x = 0$	(B)	$x^2 + y^2 - 5x + 7y = 0$			
	(\mathbf{C})	$x^{2} + y^{2} - 5x + 7y - 1 = 0$	(D)	$x^{2} + y^{2} - 8x + 7y - 2 = 0$			
84	If ton	$15^\circ = 2$ $\sqrt{3}$ then 2 tan $1095^\circ + \cot 975^\circ + \tan 975^\circ$	m (10	$O_{2}^{o} =$			
0	(Δ)	$13 - 2 - \sqrt{3}$, then 2 tan 1075 + cot 775 + ta	(R)				
	(\mathbf{C})	$2 + \sqrt{3}$	(\mathbf{D})	$4 + 2\sqrt{3}$			
- -	(0)	$4 - 2\sqrt{3}$	(D)	$2 - \sqrt{3}$			
85.	The nu	umber of circles touching the lines $x = 0$, $y = 0$	a and	y = b is			
	(A)	Four	(Б) (D)	1 wo Infinite			
97	(0)	1001	(D)	1			
00.	The or	rder and degree of the differential equation	$1 + (\frac{d}{d})$	$\left[\frac{d^2y}{dt}\right]^5 = \frac{d^2y}{dt^2}$ are respectively,			
	(A)	15	(\mathbf{B})	2 1			
	(C)	2,5	(D)	2,3			
	. /						

87.	$x^{2n} - x^{2n}$	y ²ⁿ is divisible by	(D)	
	(A) (C)	$\begin{array}{c} x - y \\ x + y \end{array}$	(B) (D)	y - x None of these
88.	Mr. X attend	Thas a 75% chance of attending the annual me ls. Otherwise she has a 50% chance of attendi the probability that Mr. X is also there is	eet. M ng. If	iss Y has an 80% chance, if Mr. X also I go to the meet and see Miss Y there,
	(A)	$\frac{24}{20}$	(B)	$\frac{25}{22}$
	(C)	$\frac{29}{26}$	(D)	$\frac{29}{27}$
89.	\int_{-}^{3}	$\sqrt{4-x}$ dx		
	$J_1 \sqrt{2}$ (A)	$\overline{x} + \sqrt{4-x}$	(B)	1
	(C)	3	(D)	2
90.	$\lim \frac{a}{b}$	$\frac{\sin x - 1}{\sin x - 1}$		
	$(A)^{x \to 0} b$	$\frac{\log a}{\log b}$	(B)	$\log\left(\frac{a}{b}\right)$
	(C)	1	(D)	0
91.	The v	alue of $\frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \dots \dots$ where C_1, C_3, C_5	a	re the binomial coefficients of order n,
	is (A)	$2^{n+1} - 1$	(B)	$2^{n} - 1$
	(\mathbf{C})	$\frac{n+1}{2^{n+1}}$	(D)	$\overline{n+1}_{2^{n+1}+1}$
	(0)	$\frac{2}{n+1}$	(D)	$\frac{2}{n+1}$
92.	The v	alue of $\binom{n}{r}$ + 2. $\binom{n}{r-1}$ + $\binom{n}{r-2}$, where	$\binom{n}{k}$	denotes the binomial coefficient of order
	n, is (A)	$\binom{n}{n}$	(B)	$\binom{n+1}{n}$
	(C)	$\binom{n+2}{n+2}$	(D)	None of these
93.	Whic	h one of the following is possible?		
	(A)	$\cos\theta = \frac{7}{3}$	(B)	$\sin\theta = \frac{a^2 + b^2}{a^2 - b^2}, (a \neq b)$
	(C)	$\sec\theta = \frac{4}{5}$	(D)	$\tan \theta = 45$
94.	In the	expansion of $\left(x^2 - \frac{1}{3x}\right)^9$ the term indep	enden	t of x is
	(A) (C)	T ₇ T ₈	(B) (D)	T ₆ T ₉
95.	If x =	$=e^{y+e^{y+\dots\infty}}, x>0, then \frac{dy}{dt}$ is		
	(A)	$\frac{x}{dx}$	(B)	1
	(C)	$ \begin{array}{l} 1+x\\ 1-x \end{array} $	(D)	$\frac{1}{x}$ 1 + x
	(0)	\overline{x}	(2)	\overline{x}

96.	$\int e^x \left(\frac{1 + \sin x}{1 + \cos x} \right) dx \text{ is}$		
	(A) $\tan\left(\frac{x}{2}\right) + C$	(B) $e^x \sin x + C$
	(C) $e^x \tan\left(\frac{x}{2}\right) + C$	(D) $e^x + C$
97.	The function $f(x) = [x]$, when (A) -2 (C) 4	re [x] denotes greatest inte (B (D	ger function is continuous at1.51
98.	If the arithmetic mean of two (A) $6 + \sqrt{7} : 6 - \sqrt{7}$ (C) $5 + \sqrt{6} : 5 - \sqrt{6}$	o positive numbers a and b (B (D	(a>b) is twice their G.M., then a:b is) $2 + \sqrt{3} : 2 - \sqrt{3}$) None of these
99.	$\lim_{x \to 0} x \sin(e^{1/x}) \text{ is equal to}$ (A) 0 (C) $\frac{e}{2}$	(B (D) 1) Does not exist
100.	Differential coefficient of e^{x} (A) $e^{x^{2}}$ (C) $x^{2}e^{x^{2}}$	² with respect to log x ² (B (D	is) xe ^{x²}) 2x ² e ^{x²}
101.	While walking on smooth su(A) Large friction(C) Larger normal force	rface one should take sma (B (D	Il steps to ensureSmall frictionSmaller normal force
102.	What happens to a vehicle tr and tires suddenly disappear(A) Moves along tangent(C) Moves radially out	avelling in an unbanked cu s (B (D) Moves radially in) Moves along the curve
103.	A ball of mass 0.2 kg strikes changes from 20m/s to 10m/ (A) $2\sqrt{7}$ (C) $2\sqrt{5}$	an obstacle and moves at s the magnitude of impuls (B (D	60° to its initial direction. If its speed e received by the ball isNs) $2\sqrt{3}$) $3\sqrt{2}$
104.	A spacecraft of mass 2000kg of mass 500 kg is stationary. (A) 600 (C) 1500	g moving with 600 m/s suc The velocity of other part (B (D	Idenly explodes into two pieces. One piece in m/s is) 800) 1000
105.	16 kg 8 kg 4 kg	g 140 N The	e force on 16 kg is?
	(A) 140N (C) 100N	(B (D) 120N) 80N

106. A man of mass 40 kg is at rest between the walls. If co eff. of friction between man and wall is 0.8, find the normal reaction exerted by wall on man (take g = 10 m/s/s)

	(A) (C)	100 N 80 N			(B) (D)	250 N 50 N
107.						
		h		D)	•
	Find (A) (C)	minimur 7D/4 5D/4	n height in term	s of D to complet	e the loop (B) (D)	9D/4 3D/4
108.	Gravi	itational	force between tw ific gravity 3 Th	wo bodies is F. The province of the province of the province of the province of the province of the province o	ne space ar	round the mass is now filled with a
	(A) (C)	F/9 F			(B) (D)	3F F/3
109.	A ma (A) (C)	n weighs infinity zero	s 75 kg on the su	irface of earth. Hi	is weight o (B) (D)	on the geostationary satellite is 150kg 75/2 kg
110.	g at a (A) (C)	a depth o 6.65 8.65	of 1600 km insid	e the earth in m/s	/s is (B) (D)	7.35 4.35
111.	A blo embe (A) (C)	the peck of matching ded in it 140 $20\sqrt{9.8}$	ass 19 M is susp it. If the block c $\overline{3}$	ended by a string ompletes the vert	of length ical circle (B) (D)	1m. A bullet of mass M hits it and gets the velocity of bullet in m/s is $20\sqrt{19.6}$ 20
112.	A rub	ber ball	falls from a heig	ght of 4m and reb	ounds to 1	.5m. The % loss of energy during the
	(A) (C)	20 23			(B) (D)	62.5 60
113.	25 kg reauii	of sand red to ma	is deposited eac aintain the belt in	h second on a con n motion is	nveyor bel	t moving at 10m/s. The extra power
	(A) (C)	2600W 325W	/		(B) (D)	250W 2500W

114.	A uniform rod of mass M and length L standing vertically on a horizontal floor falls without slipping at the bottom. The moment of inertia will be			
	(A) $ML^{2}/3$ (C) $ML^{2}/9$	(B) $ML^{2}/6$ (D) $ML^{2}/12$		
115.	If the velocity of C.M of a rolling body is $(A) = \sqrt{2} V$	s V, then velocity of highest point in the body will be $(B) = V$	e	
	$\begin{array}{c} (1) & \sqrt{2} \\ (C) & 2V \end{array}$	$\begin{array}{c} (D) & V/\sqrt{2} \end{array}$		
116.	The angular momentum of two rotating of their rotational K.E is	podies are equal. If the ratio of their M.I is 1:4, the ra	tio	
	(A) 1:2 (C) 1:4	(B) 2:1 (D) 4:1		
117.	The level of water in a tank is 5m. A hole /s is (take $g=10 \text{ m/s/s}$)	e 1 cm^2 is made at the bottom. The rate of leakage in	m ³	
	$\begin{array}{ll} (A) & 10^{-3} \\ (C) & 10 \end{array}$	(B) 10^{-4} (D) 10^{-2}		
118.	Two blocks A and B float in water. A flo $3/5^{th}$ of its volume immersed. The ratio of	bats with 1/4 th of its volume immersed and B floats w f their densities is	rith	
	(A) 5:12 (C) 3:20	(B) 12:5 (D) 20:3		
119.	The terminal velocity of a spherical ball liquid varies with R such that	of lead of radius R is V while falling through a visco	us	
	(A) V/R is constant(C) V is constant	(B) VR is constant (D) V/R^2 is constant		
120.	A hydraulic press uses a piston of 100 cm other piston that supports a mass of 2000 (A) 100 cm^2	n^{2} to exert a force of 10 ⁷ dynes on water. The area of t b kg is (take g = 10m/s/s) (B) 10 ⁹ cm ² (D) 2 x 10 ¹⁰ cm ²	he	
121.	(C) $2 \times 10^{\circ}$ cm ⁻ When kerosene and coconut oil of co eff	(D) $2 \times 10^{-4} \text{ cm}^{-1}$. of viscosity 0.002 and 0.0154 Ns/m ² are allowed		
	through the same pipe, under same press The volume of kerosene that flows is	ure difference and same time collects 1 lit of coconut	t oil.	
	(A) 5.5 lit (C) 7.7 lit	(B) 6.6 lit (D) 8.8 lit		
122.	There is a circular hole in metal plate. W(A) increased(C) unchanged	hen the plate is heated the radius of the hole become (B) decreased (D) depends on metal	s	
123.	Specific heat of a substance depends on given to substance	1. Nature of substance. 2. Mass of substance. 3. Heat		
	(A) Only 1 is correct(C) All are correct	(B) Both 1 and 2 are correct(D) Only 1 and 3 are correct		
124.	In a give process dW=0, dq is <0 then for (A) Temperature increases (C) Pressure increases	r a gas (B) Volume decreases (D) Pressure decreases		
125.	The efficiency of carnot engine depends (A) Working substance	on (B) Sink temperature		
	(C) Source temperature	(D) Both B and C		

126.	A 200 turn coil of self inductance 30 mH carries a current of 5 mA. Find the magnetic flux linked with each turn of coil.			
	(A) $7.5 \times 10^{-7} \text{Wb}$	(B) $1.6 \times 10^{-7} \text{Wb}$		
	(C) 3×10^{-7} Wb	(D) $1.5 \times 10^{-7} \text{Wb}$		
127.	The instantaneous value of current in an AC circu time, the current will be maximum?	it is I = 2 sin (100 π t + $\pi/3$) A. At what first		
	(A) $1/100 \text{ s}$	(B) 1/200 s		
	(C) $1/500 \text{ s}$	(D) 1 s		
128.	What in electric system represents force in mecha	nical system ?		
	(A) L (C) $1/C$	(B) 1		
	(C) 1/C	(D) q		
129.	A capacitor of 1 μ F is charged with 0.01C of elect	tricity. How much energy is stored in it?		
	(A) = 50J (C) = 50J	(B) $40J$ (D) $60I$		
	(C) 505			
130.	An electromagnetic wave is travelling in vacuum a medium having relative electric and magnetic pe (A) $3/\sqrt{2} \times 10^8 \text{m/s}$	with a speed of 3 x 10^8 m/s. Find the velocity in ermeability 2 and 1, respectively. (B) 1.5×10^8 m/s		
	(C) $2 \times 10^8 \text{m/s}$	(D) No change		
131.	Trace the path of a ray of light passing through a grefractive index of glass is $\sqrt{3}$, find out the value of	glass prism as shown in the figure. If the of angle of emergence from prism.		
	60			
	(Λ) 20	(P) 45		
	(A) = 50 (C) = 60	(D) 75		
132.	Light wave from two coherent sources of intensiti the ratio of maxima and minima of the interference	es in ratio 64:1 produces interference. Calculate e pattern.		
	(A) 8:1	(B) 64:1		
	(C) 9:7	(D) 81:49		
133	In young's experiment the width of the fringes of	stained with light of wavelength 6000 A^0 is 2		
100.	mm. What will be the fringe width, if the entire ap index 1.33?	oparatus is immersed in a liquid of refractive		
	(A) 1 mm	(B) 1.5 mm		
	(C) 2 mm	(D) 2.5 mm		
134.	Unpolarised light is incident on plane glass surfac	e. What should be the angle of incidence in		
	degrees, so that the reflected and refracted rays are $(A) = 27$	e perpendicular to each other?		
	(A) 37	(B) 4^{7}		
	(C) = 57	(D) 6/		

135. Determine the de-Broglie wavelength associated with an electron, accelerated through a potential difference of 100 V.

(A)	$1.227A^{0}$	(B)	$12.27A^{0}$
(C)	$122.7A^{0}$	(D)	$1227A^{0}$

136. A particle with rest mass m_0 is moving with velocity c. What is the de-Broglie wavelength associated with it?

(A)	infinity	(B)	zero
(C)	radio wave	(D)	X ray

- 137. Which among the following series gives visible light?
 - (A) Lyman(B) Balmer(C) Bracket(D) None of these
- 138. Identify the logic operation performed by this circuit

139. The number of silicon atoms per m³ is 5 x 10^{28} . This is doped simultaneously with 5 x 10^{22} atoms per m³ of arsenic and 5 x 10^{20} atoms per m³ of indium. Calculate the number of holes, given that $n_i = 1.5 \times 10^{16} \text{ m}^{-3}$.

(A)	$4.54 \ge 10^9 \text{m}^{-3}$	(B)	$4.95 \times 10^{22} \text{m}^{-3}$
(C)	$1.5 \ge 10^{16} \text{m}^{-3}$	(D)	$5 \ge 10^{28} \text{m}^{-3}$

140. Two charges $+5\mu C$ and $-5\mu C$ are placed 5 mm apart. Determine E at a point 10 cm from centre on the positive charge side along the axial line.

(A)	$4.5 \times 10^{5} \text{N/C}$	(B)	4.5 x 10°NC
(C)	4.5 x 10 ⁻⁵ N/C	(D)	4.5 x 10 ⁻⁵ NC

- 141. If the Gaussian surface is so chosen that there are some charges inside and some outside then the electric field is due to
 - (A) Only inside charges (B) Only outside charges
 - (C) All the charges

(D) Cannot determine

142. The following is a diagram showing the variation of E with r from centre of uniformly charge spherical shell of radius R

143. Net capacitance of 3 identical capacitor in series is $1\mu F$. What is the net capacitance in μF if connected in parallel?

(A)	3	(B)	6
(C)	9	(D)	12

144. An inductor of 5H carries a steady current of 2A. In what time if the current is made zero can a 40V self induced emf be produced in the inductor.
(A) 2s
(B) 1s

(11)	23	(D)	15
(C)	0.5s	(D)	0.25s

145. A cell of emf E and internal resistance r gives 0.5A with R=12 ohms and 0.25 with R = 25 ohms. Its internal resistance in ohms will be

(A)	0.5	(B)	1
(C)	2	(D)	3

146.

147.	Two i distar	Two identical circular loops P and Q of radius r are placed in parallel planes with same axis at a distance of 2r. Find B at the midpoint of the axis between them if same current I flows through				
		100 ps.	(D)	$1 \cdot 1 \cdot 1^{3/2}$		
	(A)	$\mu_0 I/2 I$	(B)	$\mu_0 2 I/2 r$		
	(C)	$\mu_0 1/4\pi$ r	(D)	Cannot be determined		
148.	A blo 0.8. It betwe	ck of mass 4 kg is kept on a rough horizontal f a force of 19 N is applied on the block paral een the block and floor is:	surface	ce. The coefficient of static friction is the floor, then the force of friction		
	(A)	19N	(B)	18 N		
	(C)	16N	(D)	9.8N		
149	Curre	ent in a circuit falls steadily from 2A to 0A in	10 ms	Calculate L if emf induced is 200V		
117.	(A)	1H	(B)	2H		
	(Γ)	311	(\mathbf{D})	211 ЛН		
	(C)	511	(D)	411		
150.	Self i core.	nductance of the air core inductor increases f What is the relative permeability of the core	rom 0. used?	01 mH to 10 mH on introducing an iron		
	(A)	500	(B)	800		
	(C)	900	(D)	1000		
151.	Amor	ing the following, the most stable complex is $(II_{1} \cap I)^{3+}$		IE-OILL) 1 ³⁺		
	(A)	$[Fe(H_2O)_6]$	(B)	$[Fe(NH_3)_6]$		
	(C)	$[\operatorname{Fe}(\operatorname{C}_2\operatorname{O}_4)_3]^2$	(D)	$[Fe(CI)_6]^2$		
152.	Whic metal	h is the correct coordination number (C.N) at atom in $[Co(NH_3)_2(H_2O)_2Cl_2]^+$?	nd oxio	dation number (O.N) of the transition		
	(A)	C.N=3, O.N=+1	(B)	C.N=4, O.N=+2		
	(C)	C.N=6, O.N=+1	(D)	C.N=6, O.N=+3		
153.	In a s	olid, oxide ions are arranged in ccp, cations A	A occu	py one sixth of the tetrahedral voids and		
	cation	B occupy one third of the octanedral voids.	I ne I	A DO		
	(A)	ABO ₃	(B)	A ₃ BO		
	(C)	$AB_{3}O$	(D)	$A_3B_3O_3$		
154.	On m Whic	ixing acetone to methanol some of the hydro h of the following statements is correct about	gen bo t the al	onds between methanol molecules break.		
	(A)	At specific composition methanol acetone mixture will form minimum boiling azeotrope and show positive deviation	(B)	At specific composition methanol acetone mixture will form maximum bailing azeotrope and show positive		
		from Racult's law		deviation from Racult's law		
	(\mathbf{C})	At specific composition methanol acetone	(D)	At specific composition methanol		
		mixture will form minimum boiling	(D)	acetone mixture will form maximum		
		azeotrone and show negative deviation		holling azeotrope and show negative		
		from Raoult's law		deviation from Raoult's law		

solubility is: (A) formaldehyde<methane<carbon (B) formaldehyde< carbon dioxide dioxide<argon <methane<argon argon<carbon dioxide< argon <methane <carbon dioxide (C) (D) methane<formaldehyde < formaldehyde The number of faradays of electricity required for electrolytic conversion of the mole of 156. nitrobenzene to aniline is: (A) 3F **(B)** 4F 6F (D) 5F (C) The positive value of the standard electrode potential of Ag^+/Ag indicates that: 157. (A) This redox couple is a stronger reducing (B) This redox couple is a stronger oxidizing agent than H^+/H_2 couple agent than H^+/H_2 couple Ag can displace H₂ from acid Ag can displace H_2 from base (C) (D) Milk is refrigerated in order to slow the rate of decomposition by bacterial action. The decrease in 158. reaction rate is due to: A decrease in surface area A decrease in \triangle H for the reaction (A) **(B)** A decrease in the fraction of particles The introduction of an alternative (C) (D) possessing sufficient energy pathway with greater activation energy. 159. Which of the following statements is not correct? The rate of a reaction decreases with **(B)** The instantaneous rate a reaction is (A) passage of time as concentration of same at any time during the reaction reactants decrease For a zero order reaction the (D) The rate of a reaction decreases with (C) concentration of reactants remains increase in concentration of reactant (s) changed with passage of time 160. Which of the following gases shows the lowest adsorption per gram of charcoal? The critical temperatures are given in parenthesis: (B) (A) H₂ (33K) CH₄(190K) (D) $CO_2(304K)$ SO₂(630K) (C) Freundlich adsorption isotherm is given by the expression $x/m=kp^{1/n}$. Which of the following 161. statements are false? i When 1/n=0, the adsorption is independent of pressure. ii. When n=0, the plot of x/m vs p graph is a line parallel to x axis. When 1/n=0, the adsorption is directly proportional to pressure. iii. When n=0, plot of x/m vs p is a curve iv. (A) i and ii (B) ii and iv i and iii (C) (D) all are false 162. In the extraction of chlorine by electrolysis of an aqueous solution of sodium chloride, which of the following statements are true? \triangle G⁰ for the overall reaction is positive \triangle G⁰ for the overall reaction is negative i. ii. E^0 for the overall reaction is positive iii. E^0 for the overall reaction is negative iv. i and iii i and iv **(B)** (A) (C) ii and iii (D) iii and iv

 $K_{\rm H}$ value for argon, carbon dioxide, formaldehyde and methane gases are 40.39, 1.67, 1.83 X 10⁻⁵

and 0.413, respectively. The correct arrangement of these gases in the order of their increasing

155

163. Which of the following pairs of ions are isoelectronic and isostructural?				
	(A)	NO_2^+ and NO_3^-	(B)	ClO_3^- and ICl_4^-
	(C)	XeO_3^{2-} and PCl_3	(D)	ClO_3^- and SO_3^{2-}
164.	Which	n of the following hydrides is the strongest rea	ducing	agent?
	(A)	NH ₃	(B)	PH ₃
	(C)	AsH ₃	(D)	SbH ₃
165	Consi	der the reactions		
105.	i	$Zn + Conc HNO_2$ (hot) \longrightarrow Zn (N	$(O_2)_2 +$	$-X + H_2O$
	ii.	$Zn + dil. HNO_3 (cold) \longrightarrow Zn (N)$	$(O_3)_2 + (O_3)_2 + (O_3$	$+ Y + H_2O$
	(4)	N ₂ O NO	(B)	$NO_2 NO_2$
	(\mathbf{C})	N_2 , N_2 O	(D)	NO_2, NO_2
166	When	KMnO acts as an avidizing agent in weakly	(-)	no modium the evidetion number of
100.	manga	$\frac{1}{100}$ acts as an oxidizing agent in weakly anese decreases by:	aikaii	the medium, the oxidation number of
	(A)	1	(B)	2
	(C)	3	(D)	5
167.	Acidif	ied potassium dichromate solution turns gree	n whe	n Na_2SO_3 is added to it due to the
	format	tion of:		
	(A)	CrSO_4	(B)	$Cr_2(SO_4)_3$
	(C)	CrO_4^2	(D)	$Cr_2(SO_3)_3$
168.	The d- Which numbe	-electron configurations of Cr^{2+} , Mn^{2+} , Fe^{2+} and none of the following complexes will exhibit ers of $Cr=24$, $Mn=25$, $Fe=26$, $Co=27$)	nd Co ² minin	⁺ are d^4 , d^5 , d^6 and d^7 , respectively. num paramagnetic behavior? (atomic
	(A) (C)	$[Cr(H_2O)_6]^{2+}$ [Fe(H_2O)_1^{2+}	(B) (D)	$[Mn(H_2O)_6]^{2+}$ $[Co(H_2O)_6]^{2+}$
160	When	2 Bromonentane is heated with notassium et	(D) hovida	in athenol, the major product obtained
107.	is:	2-bromopentalie is heated with potassium et	πολιάν	e în culanoi, înc înajor product obtained
	(A)	2-Ethoxypentane	(B)	Pent-1-ene
	(C)	Cis-Pent-2-ene	(D)	Trans-Pent-2-ene
170.	Which	of the following undergoes nucleophilic sub	stituti	on exclusively by S_N^1 mechnism?
- / • •	(A)	Chloroethane	(B)	Isopropyl chloride
	(C)	Chlorobenzene	(D)	Benzyl chloride
171.	The nu	umber of possible stereoisomers for CH ₃ CH=	CHCH	H_2 CH(Br)CH ₃ is:
	(A)	8	(B)	2
	(C)	4	(D)	6
172.	2-Met	hoxy-2-methylpropane on heating with HI pr	oduce	S:
	(A)	Methanol and sec-propyl iodide	(B)	Methyl iodide and tert-butyl alcohol
	(C)	Methyl iodide and isobutene	(D)	Methanol and tet-butyl iodide
173.	The le	ast acidic compound among the following is:		
	(A)	o-Nitrophenol	(B)	m-Nitrophenol
	(C)	p-Nitrophenol	(D)	Phenol
174.	An alk	kene C_7H_{14} on reductive ozonolysis gives an a	aldehy	de with formula C ₃ H ₆ O and a ketone.
	The ke	etone is:	<i>(</i> -)	• •
	(A)	2-Butanone	(B)	2-Pentanone
	(C)	3-Pentanone	(D)	Propanone

175.	The in Aceto	ncreasing order of the rate of addition of HC	CN to the	e compounds i) Formaldehyde ii)
	(A)	i <ii <="" iii<="" iv<="" td=""><td>(B)</td><td>iv< ii< iii < i</td></ii>	(B)	iv< ii< iii < i
	(C)	iv <iii< i<="" ii<="" td=""><td>(D)</td><td>iv< i< ii< iii</td></iii<>	(D)	iv< i< ii< iii
176.	The c	arboxylic acid that does not undergo Hell-V	ohlard-	Zelinsky reaction is:
	(A)	CH ₃ COOH	(B)	(CH ₃) ₂ CHCOOH
	(C)	CH ₃ CH ₂ CH ₂ COOH	(D)	(CH ₃) ₃ CCOOH
177.	C_2H	$H_5 NH_2 \xrightarrow{NaNO_2/HCl} X \xrightarrow{P/BT_2} Y \xrightarrow{P}$	\rightarrow (exce	Z.
	In the	above sequence, Z is:	(0,000	
	(A)	cyanoethane	(B)	ethanamide
170	(C)	methanamine	(D)	ethanamine
1/8.	value	?	at para p	bosition in animine will raise the K_b
	(A)	-SO ₃ H	(B)	-OH
	(C)	-F	(D)	-Br
179.	Whic	h of the following is an example of globular	protein	?
	(A)	myosin	(B)	collagen
	(C)	keratin	(D)	haemoglobin
180.	Whic	h one of the following is synthesized in our	body by	/ sun rays?
	(A)	Vitamin D	(B)	Vitamin B
	(C)	Vitamin K	(D)	Vitamin A
181.	Capro	plactum is the is the starting material for the	synthes	is of
	(A)	Nylon-6	(B)	Nylon6,6
	(C)	Terylene	(D)	Nylon 10
182.	The s	pecies which can serve as an initiator for car	tionic p	olymerization is
	(A)	Lithium aluminium hydride	(B)	Nitric acid
	(C)	Aluminium chloride	(D)	BuL1
183.	Aspir	in is an:		
	(A)	analgesic	(B)	antipyretic
	(C)	antimalarial	(D)	Both analgesic and antipyretic
184.	The e	quivalent mass of iron in the reaction 2Fe +	$3Cl_2 \rightarrow$	• 2FeCl ₃ is:
	(A)	Half of its atomic mass	(B)	One third of its atomic mass
	(C)	Same as atomic mass	(D)	One fourth of its atomic mass
185.	Whick	h of the following sets of quantum numbers $\frac{1}{2}$	is corre	ect for an electron in 4f subshell?
	(A)	$n=4, l=3, m=4, s=\pm 1/2$ $n=4, l=3, m=\pm 1, s=\pm 1/2$	(B)	n=4, l=3, m=-4, s=-1/2 $n=3, l=2, m=-2, s=\pm1/2$
105	(C)	m-4, r-5, m-1, s-1/2	(D)	m=3, n=2, m=-2, s=+1/2
186.	The c	orrect sequence of atomic radii is:	(D)	
	(A)	Nd>Mg>A1>S1 Si>A1>Mg>Na	(B) (D)	AI > SI > Na > Mg Si > AI > Na > Mg
107		· · · · · · · · · · · · · · · · · · ·		
187.	$\ln wh$	ich of the following, the bond angle around	the centre (\mathbf{P})	tral atom is maximum?
	(A)		(D) (D)	SCI2
	(\mathbf{c})	,		

188.	Which	of the following molecule does not exist		
	(A) (C)	NF ₃ PF ₅	(B) (D)	NF5 N2H4
189.	If heli	um is allowed to expand in vacuum, it liberat	es hea	t because
	(A)	It is an inert gas	(B)	It is an ideal gas
	(C)	Its critical temp. is low	(D)	It is a light gas
190.	i) H ₂ (g	$g_1 + 1/2O_2(g) \rightarrow H_2O(I) + x \text{ KJ}$ ii) $H_2(g) + 0$	1/2O ₂ ($(g) \rightarrow H_2O(g) + y KJ$; For the given two
	(A)	x > y	(B)	$\mathbf{X} < \mathbf{V}$
	(C)	$\mathbf{x} = \mathbf{y}$	(D)	$\mathbf{x} + \mathbf{y} = 0$
191.	If the l respec (A) (C)	bond dissociation energies of XY, X_2 , Y_2 (all tively and $\Delta_f H$ of XY is -200KJmol ⁻¹ , the bor 400 KJmol ⁻¹ 200 KJmol ⁻¹	diator nd diss (B) (D)	nic molecules) are in the ratio 1:1:0.5, sociation energy of X_2 will be: 300 KJmol ⁻¹ 100 KJmol ⁻¹
192	What	will be the correct order of vapour pressure o	f wate	r ethanol and ether at 30 ⁰ C? Given that
172.	among	these compounds water has maximum boiling	ng poi	nt and ether has minimum boiling point.
	(A)	Water <ether<ethanol< td=""><td>(B)</td><td>Water<ethanol<ether< td=""></ethanol<ether<></td></ether<ethanol<>	(B)	Water <ethanol<ether< td=""></ethanol<ether<>
	(C)	Ether <ethanol<water< td=""><td>(D)</td><td>Ethanol<ether<water< td=""></ether<water<></td></ethanol<water<>	(D)	Ethanol <ether<water< td=""></ether<water<>
193.	Which consta	of the following will occur if a 0.1M solution nt temperature?	n of a	weak acid is diluted to 0.01M at
	(A)	[H ⁺] will decrease to 0.001M	(B)	pH will decrease
	(C)	Percentage ionization will increase	(D)	K _a will increase
194.	Which (A)	of the following species involves the transfe $MnO_4^{2-} \rightarrow MnO_4^{}$	r of 51 (B)	N_A electrons per mole of it ? MnO ₄ ⁻ \rightarrow Mn ²⁺
	(C)	$MnO_4^- \rightarrow MnO_2$	(D)	$CrO_4^{2} \rightarrow Cr^{3+}$
195	30-vol	ume hyderogen peroxide means.		
190.	(A)	$30\% H_2O_2$ by volume	(B)	$30g$ of H_2O_2 solution containing 1g of it
	(C)	1 cm ³ of solution liberates 30 cm ³ of O_2 gas at STP	(D)	30 cm^3 of the solution contains one mole of H_2O_2
196	The co	prrect sequence of covalent character is repres	sented	by.
190.	(A)	LiCl <nacl<becl<sub>2</nacl<becl<sub>	(B)	BeCl ₂ <licl<nacl< td=""></licl<nacl<>
	(C)	NaCl <licl< becl<sub="">2</licl<>	(D)	BeCl ₂ <nacl<licl< td=""></nacl<licl<>
197.	Which	of the following is known as pyrene?		
	(A)	CCl ₄	(B)	CS ₂
100	(C)	S_2Cl_2	(D)	Solid CO ₂
198.	The m	ost stable carbocation amongst the following (CU) CU^+	1S:	\mathbf{D} \mathbf{C}^+
	(A)	$(CH_3)_2CH$	(B)	Pn_3C
	(C)	C113C112	(D)	
199.	The m	olecule that will have dipole moment is:		
	(A)	2,2-Dimethylpropane	(B)	cis-2-Butene
200	(C)	trans-2-Butene	(D)	2,2,3,3-1 etramethylbutane
200.	Ut the	Ive isomeric hexanes, the isomer which can	give t	two monochlorinated compound is:
	(A)	2-ivieinyipentane	(D) (R)	2,2-Dimethylbutane
	(U)	2,5-Dimeniyibutane	(D)	п-пехане

Sr.	Question
No.	

1.	1+ sin (A) (C)	x + sin ² x + up to $\infty = 4 + 2\sqrt{3}, 0 < x < \Pi$ $\frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{6}$ $2\frac{\pi}{3}, \frac{\pi}{6}$	and x (B) (D)	$\neq \frac{\pi}{2} \text{ then } \mathbf{x} = \frac{\pi}{3}, 5\frac{\pi}{6}$ $\frac{\pi}{3}, 2\frac{\pi}{3}$
2.	A cow tight. I (A) (C)	is tied to a post by a rope. The cow moves al of it describes 44 meters, when it has traced on 35 meters 56 meters	long tl ut 72° (B) (D)	he circular path always keeping the rope at the centre, the length of the rope is 22 meters 45 meters
3.	If f(x	$f(x) = \int_{-\pi}^{x} t dt, for any x \ge 0, f(x) =$		
	(A)	$\frac{1}{2}(1-x^2)$	(B)	$1 - x^2$
	(C)	$\frac{1}{2}(1+x^2)$	(D)	$1 + x^2$
4.	The to	tal of number of terms in the expansion of (x	$(+ y)^{10}$	00 + (x-y) ¹⁰⁰ after simplification is
	(A)	50	(B)	51
	(C)	202	(D)	100
5.	The m	the maximum value of $\frac{\log x}{x}$ in $(2,\infty)$ is		
	(A)	1	(B)	2
	(C)	e	(D)	$\frac{e}{1}$
6		1 1 1		E
n				

6.

7.

The series $\frac{1}{2 \cdot 5} + \frac{1}{5 \cdot 8} + \frac{1}{8 \cdot 11} + \dots \dots$ up to n terms is equal to (A) $\frac{n}{4n+6}$ (B) $\frac{1}{6n+4}$ (C) $\frac{n}{6n+4}$ (D) $\frac{\frac{1}{6n+4}}{3n+7}$ $\lim_{x \to 1} \frac{\tan(x^2 - 1)}{x - 1} \text{ equals}$

(A)
$$2$$
 (B) $\frac{1}{2}$
(C) -2 (D) $-\frac{1}{2}$

8. If
$$x^m y^n = (x + y)^{m+n}$$
 then $\frac{dy}{dx}$ is equal to
(A) $\frac{x + y}{xy}$
(B) xy
(C) 0
(D) $\frac{y}{x}$

9.	16	$-sin^{-1}(t^2-1)$ and $x - sec^{-1}(\frac{1}{t^2-1})$ then $\frac{dy}{dx}$	is equa	ıl to
	$If y = (\Delta)$	$\begin{array}{c} x \\ x \end{array} = e^{-x} \text{and} x = e^{-x} (x^{2} - 1)^{2} \text{ax}$	(B)	y
	(11)	$\overline{\gamma}$	(D)	$-\frac{x}{x}$
	(C)	<u>y</u>	(D)	_ <u>x</u>
		x		у
10.	E in d	the sum of 1^{st} is terms of the series 1^2	1 ² -	$+2^{2}$ $1^{2}+2^{2}+3^{2}$
	rinu	the sum of 1 in terms of the series $\frac{1}{1}$	$\overline{1}$	+2 $+$ $1+2+3$ $+$,
	(A)	$\frac{n+2}{2}$	(B)	$\frac{n(n+2)}{2}$
	(C)	n(n-2)	(D)	n(n-2)
		3		6
11.	Thom	π_{1}		
		1 is equal to	(D)	/ - .
	(A)	$\frac{1}{2}$	(B)	$\sqrt{2} + 1$
	(C)	1	(D)	$1 - \sqrt{2}$
		$\overline{\sqrt{2}+1}$		•
12.	The s	olution for the differential equation $\frac{dy}{dy}$	$\frac{1}{2} + \frac{dy}{dy}$	$\frac{\alpha}{2} = 0$ is
	(1)	1 1	\dot{x}	
	(A)	$\frac{1}{2} + \frac{1}{2} = c$	(В)	$\log x \cdot \log y = c$
	(C)	y = x xy = c	(D)	x + y = c
13		1 1 5		2
101	If PA	$A = \frac{1}{3}, PB = \frac{1}{4}, P(A \cup B) = \frac{1}{12}, then P(A)$	/ B)	=
	(A)	25	(B)	5
	(\mathbf{C})	16 16	(D)	4
	(C)	$\frac{10}{25}$	(D)	$\frac{2}{3}$
14	If (a	$(-2)r^2 \pm 9v^2 - 4$ represents rectangular	r hyn	erhola then a equals
11.	(A)	0	(B)	2
	(C)	9	(D)	None of these
15.	$_{If} \nabla$	$n = 55$ then the value of $\sum n^2$ is equal	lto	
	$\sum_{(n)}^{(1)}$	$n = 53$, then the value of $\sum_{i=2}^{n} n$ is equal	(\mathbf{D})	506
	(A) (C)	385 1115	(B) (D)	3025
16	(0)	1110	(D)	5025
10.	The 1	1 th term in expansion of $\left(x + \frac{1}{\sqrt{x}}\right)^{-1}$ is		
	(A)	999	(B)	1001
	(\mathbf{C})	<i>x</i>	(\mathbf{D})	$\frac{x}{x}$
	(C)	1	(D)	1001

17.	$\int_{1}^{\frac{\pi}{2}}$	$\frac{\sin^{1000} x dx}{\cos^{1000} x \sin^{1000} x}$ is equal to		
	J _o si	$in^{1000}x + cos^{1000}x$		
	(A)	$\frac{1000}{\pi}$	(B)	$\frac{1}{\pi}$
	(C)	$\frac{\pi}{2}$	(D)	$\frac{\pi}{4}$
18.	$f e^x$	$x^5 dx$ is		
	(A) (C)	$e^{x}[x^{5} + 5x^{4} + 20x^{3} + 60x^{2} + 120x + 120] + C$ $e^{x}[x^{5} - 5x^{4} + 20x^{3} - 60x^{2} + 120x - 120] + C$	(B) (D)	$e^{x}[x^{5} - 5x^{4} - 20x^{3} - 60x^{2} - 120x - 120] + C$ $e^{x}[x^{5} + 5x^{4} + 20x^{3} - 60x^{2} - 120x + 120] + C$
19.	$\int \frac{1}{\sec \theta}$	$\frac{\sec x}{\cos x + \tan x} dx \text{ is equal to}$		
	(A) (C)	$\tan x - \sec x + C.$ $\sec x + \tan x + C.$	(B) (D)	log (1 + sec x) + C. log sin x + log cos x + C.
20.	If f($f(x) + be^{ax} + ae^{bx}$, then $f''(0) =$		
	(A)	0	(B)	2ab
	(C)	ab(a+b)	(D)	ab
21.	The l (A)	length of the latus rectum of the parabor $\frac{4}{-}$	la 4y ² (B)	$x^{2} + 3x + 3y + 1 = 0$ is 7
	(C)	3 12	(D)	$\frac{3}{4}$
22.	The p	principal value of $\sin^{-1} \tan\left(-\frac{5\pi}{4}\right)$ is		
	(A)	$\frac{\pi}{2}$	(B)	<u></u>
	(\mathbf{C})	$\frac{4}{\pi}$	(D)	$\frac{4}{\pi}$
	(C)	2	(D)	$-\frac{1}{2}$
23.	If y	$= e^{m \sin^{-1}x}$, then $\frac{d^2y}{dx^2}$ at $x = 0$ is		
	(A)	m	(B)	m^2
	(C)	$-m^2$	(D)	2 <i>m</i>
24.	If y	$= \sin(2 \sin^{-1}x)$, then it satisfies the diff	erent	ial equation
	(A)	$(1 - x^2)y_2 - xy_1 + 4y = 0.$	(B)	$(1+x^2)y_2 - xy_1 + 4y = 0.$
	(C)	$(1-x^2)y_2 - xy_1 + y = 0.$	(D)	$(1+x^2)y_2 - xy_1 + 4y = 0.$
25.	The 1	value of $\cos \left[2 \tan^{-1} \frac{1+x}{1-x} + \sin^{-1} \frac{1-x^2}{1+x^2} \right]$	is	
	(A)	$\sqrt{2}$	(B)	1
	(C)	0	(D)	-1
26.	The e	equation of the circle which touches the x-axis	s and v	whose centre is $(1,2)$, is
	(A)	$x^2 + y^2 - 2x + 4y + 1 = 0.$	(B)	$x^2 + y^2 - 2x - 4y + 1 = 0.$
	(C)	$x^2 + y^2 + 2x + 4y + 1 = 0.$	(D)	$x^2 + y^2 + 4x + 2y + 1 = 0.$

27.	The differential equation $y \frac{dy}{dx} + x = c$ represents			
	(A)	A family of hyperbolas	(B)	A family of circles whose centres are on the v-axis.
	(C)	A family of parabolas	(D)	A family of circles whose centres are on the x-axis.
28.	A stor by, $x+$	he is thrown vertically upwards and the heigh $-80t - 16t^2$. The stone reaches the maximum	t x ft r height	eached by the stone in t seconds is given
	(A) (C)	28 3s	(B) (D)	2.5s 1.5s
29.	The a (A)	rea of the region bounded by $y = 2x - x$ $\frac{8}{3}$ sq. units	x ² and (B)	d the x - axis is $\frac{4}{3} sq. units$
	(C)	$\frac{7}{3}$ sq. units	(D)	$\frac{2}{3}$ sq.units
30.	If f ($x) = \begin{cases} 2a - x, & -a < x < a \\ 3x - 2a, & a < x \end{cases} $ then which	h of th	e following is true
	(A) (C)	f(x) is discontinuous at $x = a$. $f(x)$ is differentiable at $x \ge a$.	(B) (D)	f(x) is not differentiable at $x = a$. f(x) is continuous at all $x < a$.
31.	A die probal	is tossed thrice. If getting an even number is bility distribution is	consic	lered as success, the variance of the
	(A)	$\frac{3}{4}$	(B)	$\frac{1}{2}$
	(C)	$\frac{1}{4}$	(D)	$\frac{2}{3}$
32.	The co	pordinates of the foot of the perpendicular drawn f	rom th	e point (3,4) on the line $2x + y - 7 = 0$ is
	(A)	$\left(\frac{9}{5},\frac{17}{5}\right)$	(B)	(1, 5)
	(C)	(-5, 1)	(D)	(1, -5)
33.	The p	oint $(5, -7)$ lies outside the circle		2 2
	(A) (C)	$x^{2} + y^{2} - 8x = 0$ $x^{2} + y^{2} - 5x + 7y - 1 = 0$	(B) (D)	$x^{2} + y^{2} - 5x + 7y = 0$ $x^{2} + y^{2} - 8x + 7y - 2 = 0$
34.	If tan	$15^\circ = 2 - \sqrt{3}$, then 2 tan $1095^\circ + \cot 975^\circ + \tan 975^\circ$	an (–19	$95^{\circ}) =$
	(A) (C)	$2 + \sqrt{3}$ $4 - 2\sqrt{3}$	(B) (D)	$4 + 2\sqrt{3}$ $2 - \sqrt{3}$
35.	The n	umber of circles touching the lines $x = 0$, $y = 0$	a and	y = b is
	(A) (C)	Four	(B) (D)	Infinite
36.	The o	rder and degree of the differential equation	$1 + (\frac{6}{2})$	$\left(\frac{dy}{dx}\right)^{5} = \frac{d^{2}y}{dx^{2}}$ are respectively.
	(A)	1, 5	(B)	$\begin{array}{c} dx^{2} \\ 2, 1 \\ 2 \\ \end{array}$
	(C)	2, 5	(D)	2,3

37.	$\frac{x^{2n}-x}{(A)}$	y^{2n} is divisible by $x - y$	(B)	V – X
	(C)	$\mathbf{x} + \mathbf{y}$	(D)	None of these
38.	Mr. X attend then t	Thas a 75% chance of attending the annual me ls. Otherwise she has a 50% chance of attendi he probability that Mr X is also there is	eet. M ng. If	iss Y has an 80% chance, if Mr. X also I go to the meet and see Miss Y there,
	(A)	$\frac{24}{20}$	(B)	$\frac{25}{22}$
	(C)	$\frac{29}{26}$	(D)	$\frac{29}{27}$
39.	\int^{3}	$\sqrt{4-x}$		25
	$\int_{1} \sqrt{2}$	$\overline{x} + \sqrt{4-x} dx$	(D)	1
	(A) (C)	0 3	(B) (D)	2
40.	a a	$\sin x - 1$		
	$\lim_{x \to 0} \frac{1}{b}$	$\frac{\sin x - 1}{\log a}$	(B)	$\langle a_{\lambda} \rangle$
	(A)	$\frac{\log u}{\log b}$	(D)	$\log\left(\frac{1}{b}\right)$
	(C)	1	(D)	0
41.	The v	alue of $\frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \dots \dots$ where C_1, C_3, C_5	a	re the binomial coefficients of order n,
	is (A)	$2^{n+1} - 1$	(B)	$2^{n} - 1$
	(11)	$\frac{2}{n+1}$	(D)	$\frac{2}{n+1}$
	(C)	$\frac{2^{n+1}}{2}$	(D)	$\frac{2^{n+1}+1}{1}$
42	T 1	n+1	(n)	
12.	n, is	alue of $\binom{r}{r} + 2 \binom{r-1}{r-1} + \binom{r-2}{r-2}$, where	$\binom{k}{k}$	denotes the binomial coefficient of order
	(A)	$\binom{n}{r}$	(B)	$\binom{n+1}{r}$
	(C)	$\binom{n+2}{n+2}$	(D)	None of these
43.	Whic	h one of the following is possible?		
	(A)	$\cos\theta = \frac{7}{2}$	(B)	$\sin\theta = \frac{a^2 + b^2}{a^2 + b^2}, (a \neq b)$
	(C)	$\sec \theta = \frac{\frac{3}{4}}{5}$	(D)	$a^2 - b^{2+\zeta}$ $\tan \theta = 45$
44.	In the	expansion of $\left(x^2 - \frac{1}{3x}\right)^9$ the term indep	enden	t of x is
	(A)	T ₇	(B)	T ₆
15	(C)	1_8 dy	(D)	19
43.	<i>If x</i> =	$=e^{y+e^{y+\cdots\infty}}, x>0, then \frac{dy}{dx}$ is		
	(A)	$\frac{x}{1+x}$	(B)	$\frac{1}{\pi}$
	(C)	$\frac{1-x}{1-x}$	(D)	$\frac{x}{1+x}$
		x		x

5 PCM D

46.	$\int e^x \left(\frac{1 + \sin x}{1 + \cos x} \right) dx$ is	
	$(A) \tan\left(\frac{x}{2}\right) + C$	(B) $e^x \sin x + C$
	(C) $e^x \tan\left(\frac{x}{2}\right) + C$	(D) $e^{x} + C$
47.	The function $f(x) = [x]$, where $[x]$ denotes g	greatest integer function is continuous at
	(A) -2	(B) 1.5
10		
48.	If the arithmetic mean of two positive numb (A) $6 \pm \sqrt{7} \cdot 6 = \sqrt{7}$	bers a and b (a>b) is twice their G.M., then a:b is (B) $2 \pm \sqrt{2} + \sqrt{2}$
	(1) $0 + \sqrt{7} \cdot 0 - \sqrt{7}$ (C) $5 + \sqrt{6} \cdot 5 - \sqrt{6}$	(D) $2+\sqrt{3} \cdot 2-\sqrt{3}$ (D) None of these
49.	$\lim x \sin(e^{1/x}) \text{ is equal to}$	
	$\begin{array}{c} x \rightarrow 0 \\ (A) & 0 \end{array}$	(B) 1
	$(C) = \frac{e}{2}$	(D) Does not exist
50.	Differential coefficient of e^{x^2} with respect	t to $\log x^2$ is
	(A) e^{x^2}	(B) xe^{x^2}
	(C) $x^2 e^{x^2}$	(D) $2x^2e^{x^2}$
51.	While walking on smooth surface one shoul	d take small steps to ensure
	(A) Large friction	(B) Small friction
	(C) Larger normal force	(D) Smaller normal force
52.	What happens to a vehicle travelling in an u	inbanked curved path if the friction between the road
	(A) Moves along tangent	(B) Moves radially in
	(C) Moves radially out	(D) Moves along the curve
53.	A ball of mass 0.2 kg strikes an obstacle and	d moves at 60° to its initial direction. If its speed
	changes from 20m/s to 10m/s the magnitude $(A) = 2\sqrt{7}$	e of impulse received by the ball isNs (B) $2\sqrt{2}$
	$(1) 2\sqrt{7}$ (C) $2\sqrt{5}$	(D) $3\sqrt{2}$
54.	A spacecraft of mass 2000kg moving with 6 of mass 500 kg is stationary. The velocity of	500 m/s suddenly explodes into two pieces. One piece f other part in m/s is
	(A) 600 (C) 1500	(B) 800 (D) 1000
<i></i>	(C) 1500	(D) 1000
33.	16 kg 8 kg 4 kg 4 kg	— The force on 16 kg is?
	(A) 140N	(B) 120N
	(C) 100N	$\begin{array}{c} (D) & 1201\\ (D) & 80N \end{array}$

56. A man of mass 40 kg is at rest between the walls. If co eff. of friction between man and wall is 0.8, find the normal reaction exerted by wall on man (take g = 10 m/s/s)

65.	If the v (A)	velocity of C.M of a rolling body is V, then v $\sqrt{2}$ V	elocity (B)	y of highest point in the body will be V
	(C)	2V	(D)	$V/\sqrt{2}$
66.	The ar of thei	ngular momentum of two rotating bodies are or rotational K.E is	equal.	If the ratio of their M.I is 1:4, the ratio
	(A)	1:2	(B)	2:1
	(C)	1:4	(D)	4:1
67.	The le /s is (ta	vel of water in a tank is 5m. A hole 1 cm^2 is a tank $g=10 \text{ m/s/s}$	made a	at the bottom. The rate of leakage in m ³
	(A)	10-3	(B)	10^{-4}
	(C)	10	(D)	10-2
68.	Two b 3/5 th o	locks A and B float in water. A floats with 1/ f its volume immersed. The ratio of their den	4 th of sities i	its volume immersed and B floats with is
	(A)	5:12	(B)	12:5
	(C)	3:20	(D)	20:3
69.	The te liquid	rminal velocity of a spherical ball of lead of r varies with R such that	radius	R is V while falling through a viscous
	(A)	V/R is constant	(B)	VR is constant
	(C)	V is constant	(D)	V/R ² is constant
70.	A hydrother p (A)	raulic press uses a piston of 100 cm ² to exert a piston that supports a mass of 2000 kg is (take 100cm ²)	a force e g = 1 (B)	$c of 10^7 dynes on water. The area of the 0m/s/s)10^9 cm^2$
	(C)	$2 \times 10^4 \text{ cm}^2$	(D)	$2 \times 10^{10} \text{ cm}^2$
71.	When throug The vo	kerosene and coconut oil of co eff. of viscosi h the same pipe, under same pressure differe blume of kerosene that flows is	ity 0.0 nce an	02 and 0.0154 Ns/m^2 are allowed d same time collects 1 lit of coconut oil.
	(A)	5.5 lit	(B)	6.6 lit
	(C)	7.7 lit	(D)	8.8 lit
72.	There	is a circular hole in metal plate. When the pla	ate is h	neated the radius of the hole becomes
	(A)	increased	(B)	decreased
	(C)	unchanged	(D)	depends on metal
73.	Specif given	ic heat of a substance depends on 1. Nature of substance	of subs	tance. 2. Mass of substance. 3. Heat
	(A)	Only 1is correct	(B)	Both 1 and 2 are correct
	(C)	All are correct	(D)	Only 1 and 3 are correct
74.	In a gi	ve process dW=0, dq is <0 then for a gas		
	(A)	Temperature increases	(B)	Volume decreases
	(C)	Pressure increases	(D)	Pressure decreases
75.	The ef	ficiency of carnot engine depends on		
	(A)	Working substance	(B)	Sink temperature
	(C)	Source temperature	(D)	Both B and C

76. A 200 turn coil of self inductance 30 mH carries a current of 5 mA. Find the magnetic flux linked with each turn of coil.

(A)	7.5 x 10 ⁻⁷ Wb	(B)	1.6 x 10 ⁻⁷ Wb
(C)	3 x 10 ⁻⁷ Wb	(D)	1.5 x 10 ⁻⁷ Wb

77. The instantaneous value of current in an AC circuit is I = 2 sin (100 π t + $\pi/3$) A. At what first time, the current will be maximum?

(A)	1/100 s	(B)	1/200 s
(C)	1/500 s	(D)	1 s

78.	What in electric system represents force	in mechanical system?

(A)	L	(B) I
(C)	1/C	(D) q

79. A capacitor of 1 μ F is charged with 0.01C of electricity. How much energy is stored in it?

(A)	30J	(B)	40J
(C)	50J	(D)	60J

80. An electromagnetic wave is travelling in vacuum with a speed of 3×10^8 m/s. Find the velocity in a medium having relative electric and magnetic permeability 2 and 1, respectively.

(A)	$3/\sqrt{2} \times 10^8 \text{m/s}$	-	-	(B)	$1.5 \ge 10^8 \text{m/s}$
(C)	$2 \ge 10^8 \text{m/s}$			(D)	No change

81. Trace the path of a ray of light passing through a glass prism as shown in the figure. If the refractive index of glass is $\sqrt{3}$, find out the value of angle of emergence from prism.

(A)	30	(B) 45
(C)	60	(D) 75

82. Light wave from two coherent sources of intensities in ratio 64:1 produces interference. Calculate the ratio of maxima and minima of the interference pattern.

(A)	8:1	(B)	64:1
(C)	9:7	(D)	81:49

83. In young's experiment, the width of the fringes obtained with light of wavelength 6000 A^0 is 2 mm. What will be the fringe width, if the entire apparatus is immersed in a liquid of refractive index 1.33?

(A)	1 mm	(B)	1.5 mm
(C)	2 mm	(D)	2.5 mm

84. Unpolarised light is incident on plane glass surface. What should be the angle of incidence in degrees, so that the reflected and refracted rays are perpendicular to each other?

(A)	37	(B)) 47
(\mathbf{O})			

(C) 57 (D) 67

85. Determine the de-Broglie wavelength associated with an electron, accelerated through a potential difference of 100 V.

(A)	$1.227A^{0}$	(B)	$12.27A^{0}$
(C)	$122.7A^{0}$	(D)	$1227A^{0}$

86. A particle with rest mass m_0 is moving with velocity c. What is the de-Broglie wavelength associated with it?

(A)	infinity	(B)	zero
(C)	radio wave	(D)	X ray

87. Which among the following series gives visible light?

- (A) Lyman (B) Balmer
- (C) Bracket (D) None of these
- 88. Identify the logic operation performed by this circuit

89. The number of silicon atoms per m³ is 5 x 10^{28} . This is doped simultaneously with 5 x 10^{22} atoms per m³ of arsenic and 5 x 10^{20} atoms per m³ of indium. Calculate the number of holes, given that $n_i = 1.5 \times 10^{16} \text{ m}^{-3}$.

(A)	$4.54 \ge 10^9 \text{m}^{-3}$	(B)	$4.95 \ge 10^{22} \text{m}^{-3}$
(C)	$1.5 \ge 10^{16} \text{m}^{-3}$	(D)	$5 \ge 10^{28} \text{m}^{-3}$

90. Two charges $+5\mu C$ and $-5\mu C$ are placed 5 mm apart. Determine E at a point 10 cm from centre on the positive charge side along the axial line.

(A)	$4.5 \ge 10^{5} \text{N/C}$	(B)	$4.5 \times 10^{5} NC$
(C)	4.5 x 10 ⁻⁵ N/C	(D)	4.5 x 10 ⁻⁵ NC

91. If the Gaussian surface is so chosen that there are some charges inside and some outside then the electric field is due to

(A) Only inside charges	(B)	Only outside charges
-------------------------	-----	----------------------

(C) All the charges (D) Cannot determine

92. The following is a diagram showing the variation of E with r from centre of uniformly charge spherical shell of radius R

93. Net capacitance of 3 identical capacitor in series is $1\mu F$. What is the net capacitance in μF if connected in parallel?

(A)	3	(B)	6
(C)	9	(D)	12

94. An inductor of 5H carries a steady current of 2A. In what time if the current is made zero can a 40V self induced emf be produced in the inductor.

(A)	2s	(B)	1s
(C)	0.5s	(D)	0.25s

95. A cell of emf E and internal resistance r gives 0.5A with R=12 ohms and 0.25 with R = 25 ohms. Its internal resistance in ohms will be

(A)	0.5	(B)	1
(C)	2	(D)	3

96.

97.	Two identical circular loops P and Q of radius r are placed in parallel planes with same axis at a distance of 2r. Find B at the midpoint of the axis between them if same current I flows through both loops.									
	(A) (C)	$\mu_0 I/2^{3/2} r$ $\mu_0 I/4\pi r$	(B) (D)	$\mu_0 2 I/2^{3/2} r$ Cannot be determined						
98.	A block of mass 4 kg is kept on a rough horizontal surface. The coefficient of static friction is 0.8. If a force of 19 N is applied on the block parallel to the floor, then the force of friction between the block and floor is: (A) $= 10$ N									
	(A) (C)	19N 16N	(D)	9.8N						
99.	Curre (A) (C)	nt in a circuit falls steadily from 2A to 0A in 1H 3H	10 ms (B) (D)	. Calculate L if emf induced is 200V. 2H 4H						
100.	Self in core. (A)	nductance of the air core inductor increases fi What is the relative permeability of the core u 500	rom 0. used? (B)	01 mH to 10 mH on introducing an iron 800						
	(C)	900	(D)	1000						
101.	Amor (A) (C)	ing the following, the most stable complex is $[Fe(H_2O)_6]^{3+}$ $[Fe(C_2O_4)_3]^{3-}$	(B) (D)	$[Fe(NH_3)_6]^{3+}$ $[Fe(Cl)_6]^{3-}$						
102.	Which metal (A)	h is the correct coordination number (C.N) an atom in $[Co(NH_3)_2(H_2O)_2Cl_2]^+$? C.N=3, O.N=+1	d oxic	lation number (O.N) of the transition C.N=4, O.N=+2						
	(C)	C.N=6, O.N=+1	(D)	C.N=6, O.N=+3						
103.	In a section (A) (C)	olid, oxide ions are arranged in ccp, cations A a B occupy one third of the octahedral voids. ABO ₃ AB ₃ O	The fo (B) (D)	py one sixth of the tetrahedral voids and ormula of the solid is: A ₃ BO A ₃ B ₃ O ₃						
104.	On m	ixing acetone to methanol some of the hydrog	gen bo	nds between methanol molecules break.						
	Which (A)	h of the following statements is correct about At specific composition methanol acetone mixture will form minimum boiling azeotrope and show positive deviation from Raoult's law	the at (B)	At specific composition methanol acetone mixture will form maximum boiling azeotrope and show positive deviation from Raoult's law						
	(C)	At specific composition methanol acetone mixture will form minimum boiling azeotrope and show negative deviation from Raoult's law	(D)	At specific composition methanol acetone mixture will form maximum boiling azeotrope and show negative deviation from Raoult's law						
105.	$K_{\rm H}$ value for argon, carbon dioxide, formaldehyde and methane gases are 40.39, 1.67, 1.83 X 10 ⁻⁵ and 0.413, respectively. The correct arrangement of these gases in the order of their increasing solubility is:									
	(A)	formaldehyde <methane<carbon< td=""><td>(B)</td><td>formaldehyde< carbon dioxide</td></methane<carbon<>	(B)	formaldehyde< carbon dioxide						
	(C)	argon <carbon dioxide<<br="">methane<formaldehyde< td=""><td>(D)</td><td>argon <methane <carbon="" dioxide<br=""><formaldehyde< td=""></formaldehyde<></methane></td></formaldehyde<></carbon>	(D)	argon <methane <carbon="" dioxide<br=""><formaldehyde< td=""></formaldehyde<></methane>						
106.	The number of faradays of electricity required for electrolytic conversion of the mole of nitrobenzene to aniline is:									
------	--	-----------------------	--	--	--	--	--	--	--	--
	(A) 3F (B) 4F (C) 6F (D) 5F									
107.	The positive value of the standard electrode potential of Ag ⁺ /Ag indicates that:									
	 (A) This redox couple is a stronger reducing agent than H⁺/H₂ couple (B) This redox couple is a stronger oxidizing agent than H⁺/H₂ couple (C) Ag can displace H₂ from acid (D) Ag can displace H₂ from base 	ole								
108.	Milk is refrigerated in order to slow the rate of decomposition by bacterial action. The decr	ease in								
	reaction rate is due to:(B)A decrease in \triangle H for the reaction of an alternative possessing sufficient energy(A)A decrease in surface area(B)A decrease in \triangle H for the reaction of an alternative pathway with greater activation of a alternative pathway with greater ac	etion e energy.								
109.	 Which of the following statements is not correct? (A) The rate of a reaction decreases with passage of time as concentration of reactants decrease (B) The instantaneous rate a reaction same at any time during the reactants decrease 	is tion								
	 (C) For a zero order reaction the concentration of reactants remains changed with passage of time (D) The rate of a reaction decreases increase in concentration of reactants remains 	with tant (s)								
110.	Which of the following gases shows the lowest adsorption per gram of charcoal? The critic temperatures are given in parenthesis:	al								
	(A) $H_2(33K)$ (B) $CH_4(190K)$ (C) $SO_2(630K)$ (D) $CO_2(304K)$									
111.	 Freundlich adsorption isotherm is given by the expression x/m=kp^{1/n}. Which of the following statements are false? i. When 1/n=0, the adsorption is independent of pressure. ii. When n=0, the plot of x/m vs p graph is a line parallel to x axis. iii. When 1/n=0, the adsorption is directly proportional to pressure. iv. When n=0, plot of x/m vs p is a curve 	ng								
	(A) i and ii(B) ii and iv(C) i and iii(D) all are false									
112.	In the extraction of chlorine by electrolysis of an aqueous solution of sodium chloride, whi the following statements are true? i. $\triangle G^0$ for the overall reaction is positive ii. $\triangle G^0$ for the overall reaction is negative iii. E^0 for the overall reaction is positive iv. E^0 for the overall reaction is negative	ch of								
	(A)1 and iv(B)i and iii(C)ii and iii(D)iii and iv									
113.	Which of the following pairs of ions are isoelectronic and isostructural ? (A) NO_2^+ and NO_3^- (B) ClO_3^- and ICl_4^- (C) $XeO_3^{2^-}$ and PCl_3 (D) ClO_3^- and $SO_3^{2^-}$									

114.	Which	n of the following hydrides is the strongest re-	ducing	g agent?								
	(A)	NH ₃	(B)	PH ₃								
	(C)	AsH ₃	(D)	SbH ₃								
115.	Consider the reactions,											
	1. ;;	$Zn + Conc. HNO_3 (hot) \longrightarrow Zn (N)$ $Zn + dil HNO_2 (cold) \longrightarrow Zn (N)$	$ O_3 _2 + O_3 _2 = O_3$	$-X + H_2O$ + X + H_2O								
	11. $\Sigma_{II} + UII. \Pi_{INO_3} (COIU) \longrightarrow \Sigma_{II} (INO_3)_2 + Y + H_2O$ Compounds X and Y are respectively											
	(A)	N ₂ O, NO	(B)	NO ₂ , NO ₂								
	(C)	N_2, N_2O	(D)	NO ₂ , NO								
116.	When manga	KMnO ₄ acts as an oxidizing agent in weakly anese decreases by:	alkali	ine medium, the oxidation number of								
	(A)	1	(B)	2								
	(C)	3	(D)	5								
117.	Acidif forma	Acidified potassium dichromate solution turns green when Na ₂ SO ₃ is added to it due to the formation of:										
	(A)	$CrSO_4$	(B)	$Cr_2(SO_4)_3$								
	(C)	CrO ₄ ²	(D)	$\operatorname{Cr}_2(\operatorname{SO}_3)_3$								
118.	The d-electron configurations of Cr^{2+} , Mn^{2+} , Fe^{2+} and Co^{2+} are d^4 , d^5 , d^6 and d' , respectively. Which one of the following complexes will exhibit minimum paramagnetic behavior? (atomic numbers of Cr=24, Mn=25, Fe=26, Co=27)											
	(A)	$[Cr(H_2O)_6]^{2+}$	(B)	$[Mn(H_2O)_6]^{2+}$								
	(C)	$[Fe(H_2O)_6]^{2+}$	(D)	$[Co(H_2O)_6]^{2+}$								
119.	When is:	2-Bromopentane is heated with potassium et	hoxid	e in ethanol, the major product obtained								
	(A)	2-Ethoxypentane	(B)	Pent-1-ene								
	(C)	Cis-Pent-2-ene	(D)	Trans-Pent-2-ene								
120.	Which	n of the following undergoes nucleophilic sub	stituti	on exclusively by S_N^1 mechnism?								
	(A)	Chlorothane	(B)	Isopropyl chloride								
	(C)	Chlorobenzene	(D)	Benzyl chloride								
121.	The n	umber of possible stereoisomers for CH ₃ CH=	CHCl	H_2 CH(Br)CH ₃ is:								
	(A)	8 4	(B) (D)	2								
100	(\mathbf{C})	т 1	(D)									
122.	2-Met	Methanol and sec-propyl iodide	oduce (B)	s: Methyl iodide and tert-butyl alcohol								
	(\mathbf{C})	Methyl iodide and isobutene	(D)	Methanol and tet-butyl iodide								
123	The le	east acidic compound among the following is:		2								
125.	(A)	o-Nitrophenol	(B)	m-Nitrophenol								
	(C)	p-Nitrophenol	(D)	Phenol								
124.	An all The ke	kene C_7H_{14} on reductive ozonolysis gives an a etone is:	aldehy	de with formula C_3H_6O and a ketone.								
	(A)	2-Butanone	(B)	2-Pentanone								
	(C)	3-Pentanone	(D)	Propanone								
125.	The in Acetor	ncreasing order of the rate of addition of HCN ne iii) Acetophenone iv) benzophenone	to the	e compounds i) Formaldehyde ii)								
	(A)	i <ii <="" iii="" iv<="" td=""><td>(B)</td><td>iv< ii< iii < i</td></ii>	(B)	iv< ii< iii < i								
	(C)	1V<111< 11< 1	(D)	1V< 1< 11< 111								

(A) CH ₂ COOH (B) (CH ₃) ₂ CHCOOH (C) CH ₃ CH ₂ CH ₂ COOH (D) (CH ₃) ₂ CCOOH 127. $C_{2H_3}NH_2 \xrightarrow{NaNO_2/HCl} X \xrightarrow{P/Br_2} Y \xrightarrow{NH_3} (excess) Z.$ In the above sequence, Z is: (A) cyanoethane (B) ethanamide (C) methanamine (D) ethanamine (C) methanamine (D) ethanamine (A) $-SO_3H$ (B) $-OH$ (C) $-F$ (D) $-Br$ 129. Which of the following is an example of globular protein? (A) $myosin$ (B) collagen (C) keratin (D) haemoglobin 130. Which one of the following is synthesized in our body by sun rays? (A) Vitamin D (B) Vitamin B (C) Vitamin K (D) Vitamin A 131. Caprolactum is the is the starting material for the synthesis of (A) Nylon-6 (B) Nylon 10 132. The species which can serve as an initiator for cationic polymerization is (A) Lifthium aluminium hydride (B) Nitric acid (C) Aluminium enhoride (D) BuLi 133. Aspirin is an: (A) analgesic (B) antipyretic (C) antimalarial (D) Both analgesic and antipyretic (C) antimalarial (D) Both analgesic and antipyretic (C) Same as atomic mass (D) One fourth of its atomic mass (C) Same as atomic mass (D) One fourth of its atomic mass 135. Which of the following stof quantum numbers is correct for an electron in 4f subshell? (A) $n^{-4}, 1^{-3}, m^{-4}, s = +1/2$ (D) $n=3, 1^{-2}, m=-2, s = +1/2$ 136. The correct sequence of atomic radii is: (A) $Na^{-M}G^{-A} > Si (B) Al > Si > Na > Mg (C) Si > Al > Ma > Mg > Na (D) Si > Al > Si > Na > Mg (C) Si > Al > Ma > Mg > Na (D) Si > Al > Na > Mg (C) Si > Al > Ma > Mg > Na (D) Si > Al > Na > Mg (C) PCl3 (D) NgH4 (B) NH5 (C) PF5 (D) NgH4$	126.	The c	arboxylic acid that does not undergo Hell-V	ohlard-2	Zelinsky reaction is:
(C)CH ₃ CH ₂ CH ₂ COOH(D)(CH ₃) ₅ CCOOH127.C ₂ H ₃ NH ₂ NaNo ₂ /HeI XP/Br ₂ YMH ₃ (excess)Z.In the above sequence, Z is: (A)(A)(B)ethanamide(D)ethanamide(C)methanamine(D)(D)-Banamide(D)ethanamine128.The attachment of which of the following group at para position in aniline will raise the K _v value? (A)-SO ₃ H(B)-OH(C)-F(D)-Br129.Which of the following is an example of globular protein? (A) myosin(B)collagen (C)(C)keratin(D)-Ba130.Which one of the following is synthesized in our body by sun rays? (A)Vitamin D(B)(C)Vitamin K(D)Vitamin A131.Caprolactum is the is the starting material for the synthesis of (C)(A)Nylon-6. (C)(B)Nylon6.6 (C)(C)The species which can serve as an initiator for cationic polymerization is (A)Lithium aluminum hydride(B)Nitric acid (C)(D)Bul.i133.Aspirin is an: (A) analgesic(B)antipyretic(A)Half of its atomic mass(B)net al of its atomic mass(C)Same as atomic mass(D)One fourth of its atomic mass(S)Maio fits atomic mass(D)One fourth of its atomic mass(C)Same as atomic mass(D)One fourth of its atomic mass(C)Same as atomic ma		(A)	CH ₃ COOH	(B)	$(CH_3)_2$ CHCOOH
127. C ₂ H ₂ NH ₂ NaNO ₂ /HCl X P/Br ₂ Y Y → (excess) Z. In the above sequence, Z is: (A) cyanoethane (B) ethanamide (C) methanamine (D) ethanamine 128. The attachment of which of the following group at para position in aniline will raise the K _b value? (A) -SO ₃ H (B) -OH (C) -F (D) -Br 129. Which of the following is an example of globular protein? (A) myosin (B) collagen (C) keratin (D) haemoglobin 130. Which one of the following is synthesized in our body by sun rays? (A) Vitamin D (B) Vitamin A 131. Caprolactum is the is the starting material for the synthesis of (A) Nylon-6 (B) Nylon 6.6 (C) Terylene (D) Witric acid (C) Aluminium chloride (D) BuLi 133. Aspirin is an: (A) analgesic (B) antipyretic (C) Aluminium chloride (D) BuLi 133. Aspirin is an: (A) analgesic (B) antipyretic (C) Aluminium chloride (D) Both analgesic and antipyretic (C) Same as atomic mass (D) One fourth of its atomic m		(C)	CH ₃ CH ₂ CH ₂ COOH	(D)	(CH ₃) ₃ CCOOH
In the above sequence, Z is: (A) cyanoethane (B) ethanamide (C) methanamine (D) ethanamine 128. The attachment of which of the following group at para position in aniline will raise the K _b value? (A) $-SO_3H$ (B) $-OH$ (C) $-F$ (D) $-Br$ 129. Which of the following is an example of globular protein? (A) myosin (B) collagen (C) keratin (D) haemoglobin 130. Which one of the following is synthesized in our body by sun rays? (A) Vitamin D (B) Vitamin B (C) Vitamin K (D) Vitamin A 131. Caprolactum is the is the starting material for the synthesis of (A) Nylon-6 (B) Nylon 6,6 (C) Terylene (D) Nylon 10 132. The species which can serve as an initiator for cationic polymerization is (A) Lithium aluminium hydride (B) Nitric acid (C) Aluminium chloride (D) BuLi 133. Aspirin is an: (A) analgesic (B) antipyretic (C) antimalarial (D) Both analgesic and antipyretic (C) Same as atomic mass (D) One fourth of its atomic mass (C) Same as atomic mass (D) One fourth of its atomic mass (C) Same as atomic mass (D) One fourth of its atomic mass 135. Which of the following sets of quantum numbers is correct for an electron in 4f subshell? (A) $n=4, l=3, m=+1, s=+1/2$ (B) $n=4, l=3, m=-4, s=-1/2$ (C) $n=4, l=3, m=+1, s=+1/2$ (D) $n=3, l=2, m=-2, s=+1/2$ 136. The correct sequence of atomic radii is: (A) $Na^3Mg>Al>Si$ (B) $Al>Si>Na>Mg$ 137. In which of the following, the bond angle around the central atom is maximun? (A) NH_3 (B) NH_4^+ (C) PCl_3 (B) NH_5 (C) PCl_3 (B) NH_5 (C) PF_5 (D) N_2H_4	127.	C ₂ H	$I_5 NH_2 \xrightarrow{NaNO_2/HCl} X \xrightarrow{P/Br_2} Y$	$\xrightarrow{NH_3}$	\rightarrow Z.
(A) cyanoethane (B) ethanamide (C) methanamine (D) ethanamine 128. The attachment of which of the following group at para position in aniline will raise the K _b value? (A) -SO ₃ H (B) -OH (C) -F (D) -Br 129. Which of the following is an example of globular protein? (A) myosin (A) myosin (B) collagen (C) keratin (D) haemoglobin 130. Which one of the following is synthesized in our body by sun rays? (A) (A) Vitamin D (B) Vitamin A 131. Caprolactum is the is the starting material for the synthesis of (C) (A) Nylon-6 (B) Nylon6,6 (C) Terylene (D) Notric acid (C) Terylene (D) Null 132. The species which can serve as an initiator for cationic polymerization is (A) (A) Lithium aluminium hydride (B) Null (C) Aspirin is an: (A) analgesic (B) <		In the	above sequence. Z is:	(exce	ss)
(C) methanamine (D) ethanamine 128. The attachment of which of the following group at para position in aniline will raise the K _b value? (A) -SO ₃ H (B) -OH (C) -F (D) -Br 129. Which of the following is an example of globular protein? (A) myosin (B) collagen (C) keratin (D) haemoglobin 130. Which one of the following is synthesized in our body by sun rays? (A) Vitamin D (B) Vitamin B (C) Vitamin K (D) Vitamin A (D) Vitamin A 131. Caprolactum is the is the starting material for the synthesis of (C) (C) Treylene (D) Nylon 6.6 (C) Treylene (D) Nylon 10 132. The species which can serve as an initiator for cationic polymerization is (A) Lithium aluminium hydride (B) Nitric acid (C) Aluminium chloride (D) BuLi 133. Aspirin is an: (A) analgesic (B) anatipyretic (C) Athalf of its atomic mass (D)		(A)	cyanoethane	(B)	ethanamide
128. The attachment of which of the following group at para position in aniline will raise the K _b value? (A) -SO ₃ H (B) -OH (C) -F (D) -Br 129. Which of the following is an example of globular protein? (A) myosin (B) collagen (C) keratin (D) haemoglobin 130. Which one of the following is synthesized in our body by sun rays? (A) Vitamin D (B) Vitamin B (C) Vitamin K (D) Vitamin A 131. Caprolactum is the is the starting material for the synthesis of (A) Nylon-6 (B) Nylon 10 132. The species which can serve as an initiator for cationic polymerization is (A) Lithium aluminium hydride (B) Nitric acid (C) Auminum chloride (D) BuLi 133. Aspirin is an: (A) analgesic (B) ont analgesic and antipyretic (C) auminum chloride (D) BuLi 133. Aspirin is at an: (A) Half of its atomic mass (B) One third of its atomic mass (C) autimalarial (D)		(C)	methanamine	(D)	ethanamine
(A) $-SO_3H$ (B) $-OH$ (C) $-F$ (D) $-Br$ 129.Which of the following is an example of globular protein?(A)(A)myosin(B)(C)keratin(D)130.Which one of the following is synthesized in our body by sun rays?(A)Vitamin D(B)(C)Vitamin K(D)(D)Vitamin A131.Caprolactum is the is the starting material for the synthesis of(A)Nylon-6(B)(C)Terylene(D)(D)Nylon 10132.The species which can serve as an initiator for cationic polymerization is(A)Lithium aluminium hydride(B)(C)Auminium chloride(D)(D)BuLi133.Aspirin is an:(A)analgesic(B)(C)analgesic(B)(C)analgesic(B)(C)analgesic(B)(C)analgesic(B)(C)analgesic(B)(A)analgesic(B)(C)analgesic(B)(C)analgesic(B)(C)analgesic(B)(A)Half of its atomic mass(D)One third of its atomic mass(C)Sizal-ma=4, $s = +1/2$ (B)(A)n=4, $l=3, m=-4, s = +1/2$ (D)(A)n=4, $l=3, m=+1, s = +1/2$ (D)(C)n=4, $l=3, m=+1, s = +1/2$ (D)(C)Si>Al>Mg>Na(D) <td>128.</td> <td>The at value:</td> <td>ttachment of which of the following group a ?</td> <td>at para p</td> <td>osition in aniline will raise the K_b</td>	128.	The at value:	ttachment of which of the following group a ?	at para p	osition in aniline will raise the K_b
 (C) -F (D) -Br (A) myosin (B) collagen (C) keratin (D) haemoglobin 130. Which one of the following is synthesized in our body by sun rays? (A) Vitamin D (B) Vitamin B (C) Vitamin K (D) Vitamin A 131. Caprolactum is the is the starting material for the synthesis of (A) Nylon-6 (B) Nylon6,6 (C) Terylene (D) Nylon 10 132. The species which can serve as an initiator for cationic polymerization is (A) Lithium aluminium hydride (B) Nitric acid (C) Aluminium chloride (D) BuLi 133. Aspirin is an: (A) analgesic (C) antimalarial (D) Both analgesic and antipyretic (C) antimalarial (D) One fourth of its atomic mass (C) Same as atomic mass (D) One fourth of its atomic mass (C) n=4, 1=3, m=+1/2 (B) n=4, 1=3, m=-4, s = -1/2 (C) n=4, 1=3, m=+1, s = +1/2 (D) n=3, 1=2, m=-2, s = +1/2 136. The correct sequence of atomic radii is: (A) Na⁻Mg>Al>Si (B) Al>Si>Na>Mg (C) Si>Al>Mg>Na (D) Si>Al>Na>Mg 137. In which of the following, the bond angle around the central atom is maximum? (A) NF₃ (B) NF₅ (C) PF₅ (D) N₂H₄ 		(A)	-SO ₃ H	(B)	-OH
 129. Which of the following is an example of globular protein? (A) myosin (B) collagen (C) keratin (D) haemoglobin 130. Which one of the following is synthesized in our body by sun rays? (A) Vitamin D (B) Vitamin B (C) Vitamin K (D) Vitamin A 131. Caprolactum is the is the starting material for the synthesis of (A) Nylon-6 (B) Nylon6,6 (C) Terylene (D) Nylon 10 132. The species which can serve as an initiator for cationic polymerization is (A) Lithium aluminium hydride (B) Nitric acid (C) Aluminium chloride (D) BuLi 133. Aspirin is an: (A) analgesic (B) antipyretic (C) antimalarial (D) Both analgesic and antipyretic (C) antimalarial (D) One fourth of its atomic mass (C) Same as atomic mass (D) One fourth of its atomic mass (C) n=4, l=3, m=4, s = +1/2 (B) n=4, l=3, m=-4, s = -1/2 (C) n=4, l=3, m=+1, s = +1/2 (D) n=3, l=2, m=-2, s = +1/2 136. The correct sequence of atomic radii is: (A) Na⁻Mg>Al>Si (B) Al>Si>Na>Mg 137. In which of the following, the bond angle around the central atom is maximum? (A) NH₃ (B) NH₄⁺ (C) PCl₃ (D) SCl₂ 		(C)	-F	(D)	-Br
 (A) myosin (B) collagen (C) keratin (D) haemoglobin 130. Which one of the following is synthesized in our body by sun rays? (A) Vitamin D (B) Vitamin B (C) Vitamin K (D) Vitamin A 131. Caprolactum is the is the starting material for the synthesis of (A) Nylon-6 (B) Nylon6,6 (C) Terylene (D) Nylon 10 132. The species which can serve as an initiator for cationic polymerization is (A) Lithium aluminum hydride (B) Nitric acid (C) Aluminium chloride (D) BuLi 133. Aspirin is an: (A) analgesic (B) antipyretic (C) antimalarial (D) Both analgesic and antipyretic (C) antimalarial (D) Both analgesic and antipyretic (C) Same as atomic mass (B) One third of its atomic mass (C) Same as atomic mass (D) One fourth of its atomic mass (C) n=4, 1=3, m=-4, s = +1/2 (D) n=3, 1=2, m=-4, s = -1/2 (C) n=4, 1=3, m=+1, s = +1/2 (D) n=3, 1=2, m=-2, s = +1/2 136. The correct sequence of atomic radii is: (A) Na>Mg>Al>Si (B) Al>Si>Al>Na>Mg (C) Si>Al>Mg>Na (D) Si>Al>Na>Mg 137. In which of the following, the bond angle around the central atom is maximum? (A) NH₃ (B) NH₄⁺ (C) PCl₃ (B) NF₅ (C) PF₅ (D) N₂H₄ 	129.	Whicl	n of the following is an example of globular	r protein	?
 (C) keratin (D) haemoglobin 130. Which one of the following is synthesized in our body by sun rays? (A) Vitamin D (B) Vitamin B (C) Vitamin K (D) Vitamin A 131. Caprolactum is the is the starting material for the synthesis of (A) Nylon-6 (B) Nylon6,6 (C) Terylene (D) Nylon 10 132. The species which can serve as an initiator for cationic polymerization is (A) Lithium aluminium hydride (B) Nitric acid (C) Aluminium chloride (D) BuLi 133. Aspirin is an: (A) analgesic (B) antipyretic (C) antimalarial (D) Both analgesic and antipyretic (C) antimalarial (D) Both analgesic and antipyretic (C) same as atomic mass (B) One third of its atomic mass (C) Same as atomic mass (D) One fourth of its atomic mass (C) n=4, 1=3, m=4, s = +1/2 (D) n=3, 1=2, m=-4, s = -1/2 (C) n=4, 1=3, m=+1, s = +1/2 (D) n=3, 1=2, m=-2, s = +1/2 136. The correct sequence of atomic radii is: (A) Na>Mg>Al>Si (B) Al>Si>Al>Na>Mg (C) Si>Al>Mg>Na (D) Si>Al>Na>Mg (I) NH₃ (B) NH₄⁺ (C) PCl₃ (B) NF₅ (C) PF₅ (D) N₂H₄ 		(A)	myosin	(B)	collagen
 130. Which one of the following is synthesized in our body by sun rays? (A) Vitamin D (B) Vitamin B (C) Vitamin K (D) Vitamin A 131. Caprolactum is the is the starting material for the synthesis of (A) Nylon-6 (B) Nylon6,6 (C) Terylene (D) Nylon 10 132. The species which can serve as an initiator for cationic polymerization is (A) Lithium aluminum hydride (B) Nitric acid (C) Aluminium chloride (D) BuLi 133. Aspirin is an: (A) analgesic (B) antipyretic (C) antimalarial (D) Both analgesic and antipyretic 134. The equivalent mass of iron in the reaction 2Fe + 3Cl₂ → 2FeCl₃ is: (A) Half of its atomic mass (C) Same as atomic mass (D) One fourth of its atomic mass (C) n=4, l=3, m=4, s = +1/2 (B) n=4, l=3, m=-4, s = -1/2 (C) n=4, l=3, m=+1, s = +1/2 (D) n=3, l=2, m=-2, s = +1/2 136. The correct sequence of atomic radii is: (A) Na>Mg>Al>Si (B) Al>Si>Na>Mg (C) Si>Al>Mg>Na (D) Si>Al>Na>Mg 137. In which of the following, the bond angle around the central atom is maximum? (A) NH₃ (B) NH₄⁺ (C) PCl₃ (B) NF₅ (C) PF₅ (D) N₂H₄ 		(C)	keratin	(D)	haemoglobin
 (A) Vitamin D (B) Vitamin B (C) Vitamin K (D) Vitamin A 131. Caprolactum is the is the starting material for the synthesis of (A) Nylon-6 (B) Nylon6,6 (C) Terylene (D) Nylon 10 132. The species which can serve as an initiator for cationic polymerization is (A) Lithium aluminium hydride (B) Nitric acid (C) Aluminium chloride (D) BuLi 133. Aspirin is an: (A) analgesic (B) antipyretic (C) antimalarial (D) Both analgesic and antipyretic 134. The equivalent mass of iron in the reaction 2Fe + 3Cl ₂ → 2FeCl ₃ is: (A) Half of its atomic mass (B) One third of its atomic mass (C) Same as atomic mass (D) One fourth of its atomic mass (C) same as atomic mass (D) One fourth of its atomic mass (C) same as atomic radii is: (A) n=4, l=3, m=4, s = +1/2 (B) n=4, l=3, m=-4, s = -1/2 (C) n=4, l=3, m=+1/2 (D) n=3, l=2, m=-2, s = +1/2 136. The correct sequence of atomic radii is: (A) Na>Mg>Al>Si (B) Al>Si>Al>Na>Mg 137. In which of the following, the bond angle around the central atom is maximum? (A) NH₃ (B) NH₄⁺ (C) PCl₃ (B) NH₅ (C) PCl₃ (B) NH₅ (C) PCl₃ (B) NF₅ (C) PF₅ (D) N₂H₄ 	130.	Whicl	n one of the following is synthesized in our	body by	sun rays?
 (C) Vitamin K (D) Vitamin A 131. Caprolactum is the is the starting material for the synthesis of (A) Nylon-6 (B) Nylon6,6 (C) Terylene (D) Nylon 10 132. The species which can serve as an initiator for cationic polymerization is (A) Lithium aluminium hydride (B) Nitric acid (C) Aluminium chloride (D) BuLi 133. Aspirin is an: (A) analgesic (B) antipyretic (C) antimalarial (D) Both analgesic and antipyretic 134. The equivalent mass of iron in the reaction 2Fe + 3Cl₂ → 2FeCl₃ is: (A) Half of its atomic mass (B) One third of its atomic mass (C) Same as atomic mass (D) One fourth of its atomic mass 135. Which of the following sets of quantum numbers is correct for an electron in 4f subshell? (A) n=4, l=3, m=4, s = +1/2 (B) n=4, l=3, m=-4, s = -1/2 (C) n=4, l=3, m=+1, s = +1/2 (D) n=3, l=2, m=-2, s = +1/2 136. The correct sequence of atomic radii is: (A) Na>Mg>Al>Si (B) Al>Si>Al>Na>Mg 137. In which of the following, the bond angle around the central atom is maximum? (A) NH₃ (B) NH₄⁺ (C) PCl₃ (D) Si>Al>Na>Mg 137. In which of the following molecule does not exist (A) NF₃ (B) NF₅ (C) PF₅ (D) N₂H₄ 		(A)	Vitamin D	(B)	Vitamin B
131. Caprolactum is the is the starting material for the synthesis of (A) Nylon-6 (B) Nylon6,6 (C) Terylene (D) Nylon 10 132. The species which can serve as an initiator for cationic polymerization is (A) Lithium aluminium hydride (B) Nitric acid (C) Aluminium chloride (D) BuLi 133. Aspirin is an: (A) analgesic (B) antipyretic (C) antimatrial (D) Both analgesic and antipyretic (C) antimatrial (D) Both analgesic and antipyretic 134. The equivalent mass of iron in the reaction 2Fe + 3Cl ₂ → 2FeCl ₃ is: (A) (A) Half of its atomic mass (B) One third of its atomic mass (C) Same as atomic mass (D) One fourth of its atomic mass 135. Which of the following sets of quantum numbers is correct for an electron in 4f subshell? (A) n=4, l=3, m=-4, s = -1/2 (D) n=3, l=2, m=-2, s = +1/2 136. The correct sequence of atomic radii is: (A) Na>Mg>Na (D) Si>Al>Na>Mg (C) Si>Al>Mg>Na (D) <td></td> <td>(C)</td> <td>Vitamin K</td> <td>(D)</td> <td>Vitamin A</td>		(C)	Vitamin K	(D)	Vitamin A
 (A) Nylon-6 (B) Nylon6,6 (C) Terylene (D) Nylon 10 132. The species which can serve as an initiator for cationic polymerization is (A) Lithium aluminium hydride (B) Nitric acid (C) Aluminium chloride (D) BuLi 133. Aspirin is an: (A) analgesic (B) antipyretic (C) antimalarial (D) Both analgesic and antipyretic 134. The equivalent mass of iron in the reaction 2Fe + 3Cl₂ → 2FeCl₃ is: (A) Half of its atomic mass (B) One third of its atomic mass (C) Same as atomic mass (D) One fourth of its atomic mass (C) n=4, l=3, m=4, s = +1/2 (B) n=4, l=3, m=-4, s = -1/2 (C) n=4, l=3, m=+1, s = +1/2 (D) n=3, l=2, m=-2, s = +1/2 136. The correct sequence of atomic radii is: (A) Na>Mg>Al>Si (B) Al>Si>Na>Mg (C) Si>Al>Mg>Na (D) Si>Al>Na>Mg 137. In which of the following, the bond angle around the central atom is maximum? (A) NH₃ (B) NH₄⁺ (C) PCl₃ (B) NH₅ (C) PF₅ (D) N₂H₄ 	131.	Capro	lactum is the is the starting material for the	synthes	is of
(C)Terylene(D)Nylon 10132.The species which can serve as an initiator for cationic polymerization is (A)Lithium aluminium hydride(B)Nitric acid (D)133.Aspirin is an: (A) analgesic(B)antipyretic (D)BuLi133.Aspirin is an: (A) analgesic(B)antipyretic (D)Both analgesic and antipyretic134.The equivalent mass of iron in the reaction $2Fe + 3Cl_2 \rightarrow 2FeCl_3$ is: (A) Half of its atomic mass(B)One third of its atomic mass135.Which of the following sets of quantum numbers is correct for an electron in 4f subshell? (A) $n=4, l=3, m=4, s=+1/2$ (B) $n=4, l=3, m=-4, s=-1/2$ (C)136.The correct sequence of atomic radii is: (A) $Na > Mg > Al > Si$ (B) $Al > Si > Na > Mg$ (C)137.In which of the following, the bond angle around the central atom is maximum? (A) NH_3 (C) PCl_3 (B) NH_4^+ (C) PCl_3 138.Which of the following molecule does not exist (A) NF_5 (C) PF_5 (B) NF_5 (D) N_2H_4		(A)	Nylon-6	(B)	Nylon6,6
 132. The species which can serve as an initiator for cationic polymerization is (A) Lithium aluminium hydride (B) Nitric acid (C) Aluminium chloride (D) BuLi 133. Aspirin is an: (A) analgesic (B) antipyretic (C) antimalarial (D) Both analgesic and antipyretic 134. The equivalent mass of iron in the reaction 2Fe + 3Cl₂ → 2FeCl₃ is: (A) Half of its atomic mass (B) One third of its atomic mass (C) Same as atomic mass (D) One fourth of its atomic mass (C) n=4, l=3, m=4, s = +1/2 (C) n=4, l=3, m=+1, s = +1/2 (D) n=3, l=2, m=-2, s = +1/2 136. The correct sequence of atomic radii is: (A) Na>Mg>Al>Si (B) Al>Si>Na>Mg (C) Si>Al>Mg>Na (D) Si>Al>Na>Mg 137. In which of the following, the bond angle around the central atom is maximum? (A) NH₃ (B) NH₄⁺ (C) PCl₃ (B) NF₅ (C) PF₅ (D) N₂H₄ 		(C)	Terylene	(D)	Nylon 10
(A)Lithium aluminium hydride (C)(B)Nitric acid (D)133.Aspirin is an: (A) analgesic(B)antipyretic (D)134.The equivalent mass of iron in the reaction $2Fe + 3Cl_2 \rightarrow 2FeCl_3$ is: (A)Half of its atomic mass134.The equivalent mass of iron in the reaction $2Fe + 3Cl_2 \rightarrow 2FeCl_3$ is: (A)Half of its atomic mass(B)One third of its atomic mass(B)(C)Same as atomic mass(D)(C)Same as atomic mass(D)(C)n=4, l=3, m=4, $s = +1/2$ (B)(A)n=4, l=3, m=4, $s = +1/2$ (B)(C)n=4, l=3, m=+1, $s = +1/2$ (D)(C)n=4, l=3, m=+1, $s = +1/2$ (D)(C)Si>Al>Mg>Na(D)Si>Al>Mg>Na(D)(C)Si>Al>Mg>Na(D)(D)Si>Al>Na>Mg(C)PCl_3(D)(A)NH_3(B)(B)NH4_+(C)PCl_3(D)(B)NF5(C)(C)PF5(D)(D)N2H4	132.	The sp	pecies which can serve as an initiator for ca	tionic po	olymerization is
(C)Aluminium chloride(D)BuLi133.Aspirin is an: (A)analgesic(B)antipyretic(C)antimalarial(D)Both analgesic and antipyretic134.The equivalent mass of iron in the reaction $2Fe + 3Cl_2 \rightarrow 2FeCl_3$ is: (A)Half of its atomic mass(B)(C)Same as atomic mass(B)One third of its atomic mass(C)Same as atomic mass(D)One fourth of its atomic mass(C)Same as atomic mass(D)One fourth of its atomic mass135.Which of the following sets of quantum numbers is correct for an electron in 4f subshell? (A)n=4, l=3, m=4, s = +1/2(A)n=4, l=3, m=4, s = +1/2(B)n=4, l=3, m=-4, s = -1/2(C)n=4, l=3, m=+1, s = +1/2(D)n=3, l=2, m=-2, s = +1/2136.The correct sequence of atomic radii is: (A) Na>Mg>Al>Si(B)Al>Si>Na>Mg(C)Si>Al>Mg>Na(D)Si>Al>Na>Mg137.In which of the following, the bond angle around the central atom is maximum? (A) NH3(B)NH4+* (C)(C)PCl3(D)SCl2138.Which of the following molecule does not exist (A) NF3 (C)(B)NF5 (D) N2H4		(A)	Lithium aluminium hydride	(B)	Nitric acid
133.Aspirin is an: (A) analgesic (C) antimalarial(B) antipyretic (D) Both analgesic and antipyretic134.The equivalent mass of iron in the reaction $2Fe + 3Cl_2 \rightarrow 2FeCl_3$ is: 		(C)	Aluminium chloride	(D)	BuLi
(A) analgesic (C) antimalarial(B) antipyretic134. The equivalent mass of iron in the reaction $2Fe + 3Cl_2 \rightarrow 2FeCl_3$ is: (A) Half of its atomic mass (C) Same as atomic mass(B) One third of its atomic mass (D) One fourth of its atomic mass135. Which of the following sets of quantum numbers is correct for an electron in 4f subshell? (A) $n=4, l=3, m=4, s=+1/2$ (C) $n=4, l=3, m=+1, s=+1/2$ (B) $n=4, l=3, m=-4, s=-1/2$ (D) $n=3, l=2, m=-2, s=+1/2$ 136. The correct sequence of atomic radii is: (A) $Na>Mg>Al>Si$ (C) $Si>Al>Mg>Na$ (B) $Al>Si>Na>Mg$ 137. In which of the following, the bond angle around the central atom is maximum? (A) NH_3 (C) PCl_3 (B) NH_4^+ (C) PCl_3 138. Which of the following molecule does not exist (A) NF_3 (C) PF_5 (B) NF_5 (D) N_2H_4	133.	Aspiri	in is an:		
(C) antimalarial(D) Both analgesic and antipyretic134. The equivalent mass of iron in the reaction $2Fe + 3Cl_2 \rightarrow 2FeCl_3$ is: (A) Half of its atomic mass(B) One third of its atomic mass(C) Same as atomic mass(B) One fourth of its atomic mass(C) Same as atomic mass(D) One fourth of its atomic mass135. Which of the following sets of quantum numbers is correct for an electron in 4f subshell? (A) $n=4, l=3, m=4, s=+1/2$ (B) $n=4, l=3, m=-4, s=-1/2$ (C) $n=4, l=3, m=+1, s=+1/2$ (D) $n=3, l=2, m=-2, s=+1/2$ 136. The correct sequence of atomic radii is: (A) $Na>Mg>Al>Si$ (C) $Si>Al>Mg>Na$ (B) $Al>Si>Na>Mg$ 137. In which of the following, the bond angle around the central atom is maximum? (A) NH_3 (C) PCl_3 (B) NH_4^+ (C) PCl_3 (C) PCl_3 (B) NF_5 (C) PF_5 (B) NF_5 (C) PF_5 (D) N_2H_4		(A)	analgesic	(B)	antipyretic
134.The equivalent mass of iron in the reaction $2Fe + 3Cl_2 \rightarrow 2FeCl_3$ is: (A) Half of its atomic mass(B) One third of its atomic mass(C) Same as atomic mass(D) One fourth of its atomic mass135.Which of the following sets of quantum numbers is correct for an electron in 4f subshell? (A) $n=4, l=3, m=4, s=+1/2$ (B) $n=4, l=3, m=-4, s=-1/2$ (C) $n=4, l=3, m=+1, s=+1/2$ 136.The correct sequence of atomic radii is: (A) $Na>Mg>Al>Si$ (C) $Si>Al>Mg>Na$ 137.In which of the following, the bond angle around the central atom is maximum? (A) NH_3 (C) PCl_3 138.Which of the following molecule does not exist (A) NF_3 (C) PF_5 138.Which of the following molecule does not exist (A) NF_3 (D) N_2H_4		(C)	antimalarial	(D)	Both analgesic and antipyretic
(A)Half of its atomic mass(B)One third of its atomic mass(C)Same as atomic mass(D)One fourth of its atomic mass135.Which of the following sets of quantum numbers is correct for an electron in 4f subshell? (A) $n=4, l=3, m=4, s=+1/2$ (B)(A) $n=4, l=3, m=4, s=+1/2$ (B) $n=4, l=3, m=-4, s=-1/2$ (C) $n=4, l=3, m=+1, s=+1/2$ (B) $n=4, l=3, m=+1, s=+1/2$ (D) $n=3, l=2, m=-2, s=+1/2$ 136.The correct sequence of atomic radii is: (A)Na>Mg>Al>Si(B)(C)Si>Al>Mg>Na(D)Si>Al>Na>Mg137.In which of the following, the bond angle around the central atom is maximum? (A)NH3 (B)NH4^+ (C)(C)PCl3(D)SCl2138.Which of the following molecule does not exist (A)NF3 (C)(B)NF5 (C)(C)PF5(D)N2H4	134.	The e	quivalent mass of iron in the reaction 2Fe +	$-3Cl_2 \rightarrow$	2FeCl ₃ is:
(C)Same as atomic mass(D)One fourth of its atomic mass135.Which of the following sets of quantum numbers is correct for an electron in 4f subshell? (A) $n=4, l=3, m=4, s=+1/2$ (C) $n=4, l=3, m=+1, s=+1/2$ (B) $n=4, l=3, m=-4, s=-1/2$ (D)136.The correct sequence of atomic radii is: (A) Na>Mg>Al>Si (C)(B)Al>Si>Na>Mg (D)137.In which of the following, the bond angle around the central atom is maximum? (A) NH3 (C)PCl3(B)138.Which of the following molecule does not exist (A) NF3 (C)(B)NF5 (D) N2H4		(A)	Half of its atomic mass	(B)	One third of its atomic mass
 135. Which of the following sets of quantum numbers is correct for an electron in 4f subshell? (A) n=4, l=3, m=4, s = +1/2 (B) n=4, l=3, m=-4, s = -1/2 (C) n=4, l=3, m=+1, s = +1/2 (D) n=3, l=2, m=-2, s = +1/2 136. The correct sequence of atomic radii is: (A) Na>Mg>Al>Si (B) Al>Si>Na>Mg (C) Si>Al>Mg>Na (D) Si>Al>Na>Mg 137. In which of the following, the bond angle around the central atom is maximum? (A) NH₃ (B) NH₄⁺ (C) PCl₃ (B) NH₄⁺ (C) PCl₃ (B) NF₅ (C) PF₅ (D) N₂H₄ 		(C)	Same as atomic mass	(D)	One fourth of its atomic mass
(A) $n=4, l=3, m=4, s=+1/2$ (B) $n=4, l=3, m=-4, s=-1/2$ (C) $n=4, l=3, m=+1, s=+1/2$ (D) $n=3, l=2, m=-2, s=+1/2$ 136.The correct sequence of atomic radii is: (A)Na>Mg>Al>Si(B)Al>Si>Na>Mg(C)Si>Al>Mg>Na(D)Si>Al>Na>Mg137.In which of the following, the bond angle around the central atom is maximum? (A)NH3(B)NH4^+ (C)(C)PCl3(D)SCl2138.Which of the following molecule does not exist (A)NF3(B)NF5 (C)(A)NF3(B)NF4	135.	Whicl	n of the following sets of quantum numbers	is corre	ct for an electron in 4f subshell?
(C) $n=4, l=3, m=+1, s=+1/2$ (D) $n=3, l=2, m=-2, s=+1/2$ 136.The correct sequence of atomic radii is: (A)Na>Mg>Al>Si(B)Al>Si>Na>Mg(C)Si>Al>Mg>Na(D)Si>Al>Na>Mg137.In which of the following, the bond angle around the central atom is maximum? (A)NH3(B)NH4+(C)PCl3(D)SCl2138.Which of the following molecule does not exist (A)NF3(B)NF5(C)PF5(D)N2H4		(A)	n=4, l=3, m=4, s = +1/2	(B)	n=4, l=3, m=-4, s=-1/2
136.The correct sequence of atomic radii is: (A) Na>Mg>Al>Si(B) Al>Si>Na>Mg (D) Si>Al>Mg(C) Si>Al>Mg>Na(D) Si>Al>Na>Mg137.In which of the following, the bond angle around the central atom is maximum? (A) NH3 (C) PCl3(B) NH4^+ (D) SCl2138.Which of the following molecule does not exist (A) NF3 (C) PF5(B) NF5 (D) N2H4		(C)	n=4, l=3, m=+1, s=+1/2	(D)	n=3, $l=2$, $m=-2$, $s=+1/2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	136.	The c	orrect sequence of atomic radii is:		
(C)Si>Al>Mg>Na(D)Si>Al>Na>Mg137.In which of the following, the bond angle around the central atom is maximum?(A)NH3(B) NH_4^+ (C)PCl3(D)SCl2138.Which of the following molecule does not exist(A)NF3(A)NF3(B)NF5(C)PF5(D)N2H4		(A)	Na>Mg>Al>Si	(B)	Al>Si>Na>Mg
137.In which of the following, the bond angle around the central atom is maximum?(A) NH_3 (B) NH_4^+ (C) PCl_3 (D) SCl_2 138.Which of the following molecule does not exist(A) NF_3 (B) NF_5 (C) PF_5 (D) N_2H_4		(C)	Si>Al>Mg>Na	(D)	Si>Al>Na>Mg
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	137.	In wh	ich of the following, the bond angle around	the cent	tral atom is maximum?
$ \begin{array}{cccc} (C) & PCl_3 & (D) & SCl_2 \\ \hline 138. & Which of the following molecule does not exist \\ (A) & NF_3 & (B) & NF_5 \\ (C) & PF_5 & (D) & N_2H_4 \\ \end{array} $		(A)	NH ₃	(B)	$\mathrm{NH_4}^+$
138.Which of the following molecule does not exist (A) NF_3 (C) PF_5 (B) NF_5 (D) N_2H_4		(C)	PCl ₃	(D)	SCl ₂
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	138.	Whicl	n of the following molecule does not exist		
(C) PF_5 (D) N_2H_4		(A)	NF ₃	(B)	NF ₅
		(C)	PF ₅	(D)	N_2H_4

139.	If helin (A) (C)	um is allowed to expand in vacuum, it liberat It is an inert gas Its critical temp. is low	es hea (B) (D)	t because It is an ideal gas It is a light gas
140.	i) H ₂ (g reaction	$g) + 1/2O_2(g) \rightarrow H_2O(I) + x KJ$ ii) $H_2(g) + ons$,	1/2O ₂	$(g) \rightarrow H_2O(g) + y KJ$; For the given two
	(A) (C)	$\begin{array}{l} x > y \\ x = y \end{array}$	(B) (D)	$ \begin{array}{l} x < y \\ x + y = 0 \end{array} $
141.	If the l respec (A) (C)	bond dissociation energies of XY, X_2 , Y_2 (all tively and $\Delta_f H$ of XY is -200KJmol ⁻¹ , the bor 400 KJmol ⁻¹ 200 KJmol ⁻¹	diator nd diss (B) (D)	mic molecules) are in the ratio 1:1:0.5, sociation energy of X_2 will be: 300 KJmol ⁻¹ 100 KJmol ⁻¹
142.	What water whet we want whet we want with a mong (A)	will be the correct order of vapour pressure o g these compounds water has maximum boiling Water <ether<ethanol< td=""><td>f wate ng poi (B)</td><td>r, ethanol and ether at 30°C? Given that nt and ether has minimum boiling point. Water<ethanol<ether< td=""></ethanol<ether<></td></ether<ethanol<>	f wate ng poi (B)	r, ethanol and ether at 30°C? Given that nt and ether has minimum boiling point. Water <ethanol<ether< td=""></ethanol<ether<>
	(C)	Ether <ethanol<water< td=""><td>(D)</td><td>Ethanol<ether<water< td=""></ether<water<></td></ethanol<water<>	(D)	Ethanol <ether<water< td=""></ether<water<>
143.	Which	of the following will occur if a 0.1M solution t temperature?	n of a	weak acid is diluted to 0.01M at
	(A) (C)	$[H^+]$ will decrease to 0.001M Percentage ionization will increase	(B) (D)	pH will decrease K _a will increase
144.	Which (A) (C)	of the following species involves the transfer $MnO_4^{2^-} \rightarrow MnO_4^-$ $MnO_4^- \rightarrow MnO_2$	r of 51 (B) (D)	N _A electrons per mole of it ? $MnO_4^- \rightarrow Mn^{2+}$ $CrO_4^{2-} \rightarrow Cr^{3+}$
145.	30-vol	ume hyderogen peroxide means:		
	(A)	$30\% H_2O_2$ by volume	(B)	$30g \text{ of } H_2O_2 \text{ solution containing } 1g \text{ of } it$
	(C)	1 cm ³ of solution liberates 30 cm ³ of O_2 gas at STP	(D)	30 cm^3 of the solution contains one mole of H_2O_2
146.	The co	prrect sequence of covalent character is repres	sented	
	(A) (C)	NaCl <licl< becl<sub="">2</licl<>	(B) (D)	BeCl ₂ <nacl<licl< td=""></nacl<licl<>
147.	Which	of the following is known as pyrene?		
	(A)	CCl ₄ S-Cl ₂	(B) (D)	CS ₂ Solid CO ₂
148.	The m	ost stable carbocation amongst the following	(D) is:	
	(A)	$(CH_3)_2CH^+$	(B)	Ph_3C^+
149.	(C) The m	olecule that will have dipole moment is:	(D)	CH_2 - CH - CH_2
	(A)	2,2-Dimethylpropane	(B)	cis-2-Butene
150	(C) Of the	five isomeric hexanes the isomer which can	(D) give t	2,2,3,3-1 etramethylbutane
	(A)	2-Methylpentane	(B)	2,2-Dimethylbutane
	(C)	2,3-Dimethylbutane	(D)	n-Hexane
151.	If the lout as	letters of the word SACHIN are arranged in a in dictionary, then the word SACHIN appear	ll poss is at se	sible ways and these words are written erial number
	(A)	601	(B)	600
	(C)	603	(D)	602

152.	2. The number of ways of distributing 8 identical balls in 3 distinct boxes so that none of the boxes remain empty is											
	(A) (C)	5 3 ⁸	(B) (D)	21 ⁸ C ₃								
153.	The n appea	umber of arrangements of the letters of the w r adjacently is	ord B	ANANA in which the two N's do not								
	(A) (C)	40 80	(B) (D)	60 100								
154.	Numb (A) (C)	per of divisors of the form $4n+2$ (n ≥ 0) of the i 4 10	nteger (B) (D)	240 is 8 3								
155.	6 men ways	and 4 women are to be seated in a row so that they can be seated is	at no t	wo women sit together. The number of								
	(A) (C)	604800 120960	(B) (D)	17280 518400								
156.	If the cube roots of unity are $1, \omega, \omega^3$, then the roots of the equation $(x-1)^3 + 8 = 0$ are											
	(A) (C)	$-1, -1 + 2 \omega, -1 - 2 \omega^{2}$ -1, 1-2 $\omega, 1-2 \omega^{2}$	(B) (D)	-1, -1, -1 -1, 1+2 ω , 1+2 ω^2								
157.	If z_1 and z_2 are two non-zero complex numbers such that $ z_1 + z_2 = z_1 + z_2 $, then $\arg(z_1) - \arg(z_2)$ is equal to											
	(A) (C)	$\frac{\pi}{2}$	(B) (D)	$-\frac{\pi}{2}$								
158.	If arg (A)	$(z) < 0$, then arg $(-z) - \arg(z) = \pi$	(B)	-π								
	(C)	$-\pi/2$	(D)	$\pi/2$								
159.	If ω is (A) (C)	s an imaginary cube root of unity, then $(1+\omega-0.128 \omega)$ 128 ω^2	(B) (D) (D)	quals -128 ω -128 ω ²								
160.	The pand of	oints z1, z2, z3, z4 in the complex plane are t nly if	he ver	tices of a parallelogram taken in order if								
	(A) (C)	$z_1 + z_4 = z_2 + z_3$ $z_1 + z_2 = z_3 + z_4$	(B) (D)	z1 + z3 = z2 + z4 None of these								
161.	Let R 12}. 7	$= \{(3,3) (6,6) (9,9) (12,12), (6,12) (3,9) (3,12) $ The relation is	2), (3,6	(5)} be in a relation on the set $A = \{3, 6, 9, \dots\}$								
	(A) (C)	Reflexive and transitive An equivalence relation	(B) (D)	Reflexive only Reflexive and symmetric only								
162.	If a re (a+y),	al valued function $f(x)$ satisfies the functional where 'a' is a given constant and $f(0) = 1$, the formula $f(x) = 1$ is a given constant and $f(0) = 1$.	al equa en f (2	ation $f(x-y) = f(x) f(y) - f(a-x) f$ 2a-x) is equal to								
	(A) (C)	f(x) = f(x) f(x) + f(a-x)	(D) (B)	$ \frac{f(x)}{f(-x)} $								

163.	If the graph of the function $f(x)$ is symmetrical ab (A) $f(x+2) = f(x-2)$ (C) $f(x) = f(-x)$	out the (B) (D)	e line x=2, then f(2+x) = f(2-x) f(x) = -f(-x)
164.	The function $f: R \rightarrow R$ defined by $f(x) = \sin x$ is (A) into (C) one-one	(B) (D)	onto many-one
165.	 In a college of 300 students, every student reads 5 students. The number of newspapers is (A) At least 30 (C) Exactly 25 	newsp (B) (D)	At most 20 None of these
166.	 The value of a for which the sum of the squares of assume the least value is (A) 1 (C) 3 	(E) (B) (D)	bots of the equation $x^2 - (a - 2) x - a - 1 = 0$ 0 2
167.	If the roots of the equation $x^2 - bx + c = 0$ be two of (A) -2 (C) 2	consec (B) (D)	utive integers, then $b^2 - 4c$ equals 3 1
168.	If $(1-p)$ is a root of quadratic equation $x^2 + px + (1-p)(A) = 0, 1$ (C) 0, -1	- p) = (B) (D)	0, then the roots are - 1, 1 - 1, 2
169.	The number of real solutions of the equation $x^2 - 3$ (A) 2 (C) 1	x +2 (B) (D)	=0 is/are 4 3
170.	If $x^2 + 2ax + 10 - 3a > 0$ for every real value of x, (A) $a > 5$ (C) $-5 < a < 2$	then (B) (D)	a <- 5 2 < a < 5
171.	 The angle between two diagonals of a cube is (A) 45° (C) 90° 	(B) (D)	60° $\tan^{-1}2\sqrt{2}$
172.	If the angle between two vectors $\vec{i} + \vec{k}$ and $\vec{i} - \vec{j} + \vec{k}$ (A) 2 (C) -2	+ $a\vec{k}$ (B) (D)	is $\pi/3$, then the value of a is 4
173.	The scalar $\vec{A} \cdot (\vec{B} + \vec{C}) \times (\vec{A} + \vec{B} + \vec{C})$ equals (A) 0 (C) $[\vec{A} \ \vec{B} \ \vec{C}]$	(B) (D)	$\begin{bmatrix} \vec{A} \ \vec{B} \ \vec{C} \end{bmatrix} + \begin{bmatrix} \vec{B} \ \vec{C} \ \vec{A} \end{bmatrix}$ None of these
174.	The points with position vectors $60\hat{i} + 3\hat{i}, 40\hat{i} - 8\hat{i}$ (A) $a=-40$ (C) $a=20$	Bĵ, aî - (B) (D)	 52ĵ are collinear if a=40 None of these
175.	The number of vectors of unit length perpendicula(A) one(C) three	r to ve (B) (D)	ectors $\vec{a} = (0 \ 1, \ 1)$ and $\vec{b} = (1 \ 1, \ 0)$ is two Infinite
176.	The angle between the lines $2x = 3y = -z$ and $6x = (A) = 0^{\circ}$ (C) 45°	= - y = (B) (D)	= -4z is 90° 30°

177.	Distance between two parallel planes $2x + y + 2z =$ (A) $3/2$ (C) $7/2$	8 and (B) (D)	4x + 2y + 4z + 5 = 0 is 5/2 9/2
178.	The method of least squares dictates that we choose of deviations of the points from the line is: (A) Maximum	e regre	ession line where the sum of the square
	(C) Zero	(D)	Positive
179.	If the value of any regression coefficient is zero, the (A) Qualitative	en two (B)	o variables are: Correlated
	(C) Dependent	(D)	Independent
180.	A process by which we estimate the value of dependent variables is called:	dent v	variable on the basis of one or more
	(A) Correlation (C) Residual	(B) (D)	Regression
181.	If $A = \begin{bmatrix} 1 & -1 \end{bmatrix}$ then $A^3 =$	(D)	Slope
	$\begin{array}{ccc} \begin{array}{c} & & & \\ & & & \\ \end{array} \\ \begin{array}{ccc} (A) & A \end{array} \end{array}$	(B)	2A
	(C) 3A	(D)	4A
182.	The value of $\begin{vmatrix} 1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z \end{vmatrix}$ is equal to		
	(A) $1+x+y+z$ (C) xyz	(B) (D)	x+y+z xvz+xv+xz+vz
183.	If $A^2 - A + I = 0$, then the inverse of A is	(D)	KJE KJ KE VE
	(A) A (C) I–A	(B) (D)	A–I I
184.	The number of bijective functions from a set A to i	tself w	when A contains 106 elements is
	(A) 106 (C) 106 !	(B) (D)	$\frac{106^3}{2^{106}}$
185.	The value of $\begin{vmatrix} 11 & 12 & 13 \\ 12 & 13 & 14 \\ 12 & 14 & 15 \end{vmatrix}$ is		
	(A) 1 (A) 1	(B)	0
107	(C) -1	(D)	67
186.	The mean deviation of the data 3, 10, 10, 4, $7, 10, 5$ (A) 2	(B)	2.57
187	(C) 3 The standard deviation of the data 6 5 9 13 12 8	(D) 10 is	3.75
107.	(A) $\sqrt{\frac{52}{7}}$	(B)	<u>52</u> 7
	(C) $\sqrt{6}$	(D)	6
188.	Let a, b, c, d, e be the observations with mean m an of the observations $a+k$ $b+k$ $c+k$ $d+k$ $e+k$ is	d stan	dard deviation s. The standard deviation
	(A) ks	(B)	S (1
	(C) $S+K$	(D)	S/K

189.	Coefficients of variation of two distributions are 50 25, respectively. Difference of their standard devia) and (tions i	60, and their arithmetic means are 30 and s							
	(A) 2.5	(B)	1							
	(C) 1.5	(D)	0							
190.	Consider the first 10 positive integers. If we multip number, the variance of the numbers so obtained is	ly eac	h number by -1 and then add 1 to each							
	(A) 8.25	(B)	6.50							
101	(C) 3.87	(D)	2.87							
191.	For a linear programming equations, convex set of	equat	Disposed solutions							
	(A) Feasible solutions (C) Profit solutions	(D)	Loss solutions							
100		(D)								
all constraints is										
	(A) at least 1	(B)	0							
	(C) An infinite number	(D)	At least 2							
193.	A constraint that does not affect the feasible region	is a								
	(A) Non-negativity constraint	(B)	Redundant constraint							
	(C) Standard constraint	(D)	Slack constraint							
194.	Consider the following LPP. Maximize $3x_1 + 8x_2$ subject to $2x_1 + 5x_2 \le 10$, $6x_1 + x_2 \le 6$, $x_1, x_2 = 0$. The optimal value of the function is									
	(A) 0	(B)	3							
	(C) 111	(D)	16							
	7									
195.	For linear inequalities, solution set for a group of in	nequal	ities is classified as							
	(A) Concave set	(B)	Convex set							
	(C) Loss set	(D)	Profit set							
196.	Which of the following is unary operations?	(=)								
	(A) Addition	(B)	Multiplication							
	(C) Square root	(D)	None of these							
197.	If * is a binary operation in A then	(=)								
	(A) A is closed under *	(B)	A is not closed under *							
108	(C) A is not closed under + Which of the following statements is not correct?	(D)	A is closed under –							
198.	(A) $L \circ \sigma_{10} = 1$	(B)	$\log (2 + 3) = \log (2 \times 3)$							
	$\begin{array}{ccc} (A) & Log_{10} & 10 & 1 \\ (C) & Log_{10} & 1 = 0 \end{array}$	(D)	$\log(2+3) = \log(2+3)$							
100	$(2) = 2 g_{10} + 1 (1/2)$	(2)								
199.	If $\log (a/b) + \log (b/a) = \log (a+b)$, then (A) $a+b=1$	(\mathbf{R})	a h=1							
	$ \begin{array}{c} (A) & a+b-1 \\ (C) & a=b \end{array} $	(\mathbf{D})	$a^{2}-b^{2}=1$							
200.	The value of e is	(1)	w C 1							
	(A) 0	(B)	1							
	(C) 2.718	(D)	2.14							

PCB UG A- ANSWER KEY

Q.	An	Q.	Ans	Q.	Answe	Q.	Ans	Q.	Ans	Q .	Ans
No.	S	No.		No.	r	No.	wer	No.	wer	No.	wer
1.	C	35.	А	69.	Α	103	All	137	В	171	C
2.	В	36.	D	70.	D	104	В	138	Α	172	D
3.	Α	37.	С	71.	В	105	D	139	Α	173	D
4.	D	38.	А	72.	В	106	В	140	Α	174	Α
5.	С	39.	D	73.	С	107	С	141	С	175	С
6.	В	40	В	74.	D	108	С	142	D	176	D
7.	Α	41.	С	75.	D	109	С	143	С	177	D
8.	D	42.	D	76.	Α	110	В	144	D	178	В
9.	Α	43.	А	77.	С	111	Α	145	В	179	D
10.	В	44.	В	78.	В	112	В	146	All	180	Α
11.	С	45.	С	79.	A/B	113	D	147	Α	181	Α
12.	D	46.	А	80.	С	114	Α	148	Α	182	С
13.	Α	47.	С	81.	В	115	С	149	Α	183	D
14.	В	48.	С	82.	D	116	D	150	D	184	В
15.	С	49.	D	83.	Α	117	Α	151	С	185	С
16.	D	50.	В	84.	Α	118	Α	152	D	186	Α
17.	Α	51.	D	85	С	119	D	153	Α	187	В
18.	С	52.	В	86	С	120	С	154	Α	188	В
19.	Α	53.	D	87	С	121	С	155	С	189	All
20.	В	54.	Α	88	В	122	Α	156	С	190	A
21.	D	55.	D	89	С	123	Α	157	В	191	All
22.	Α	56.	С	90	В	124	All	158	С	192	В
23.	С	57.	Α	91	Α	125	D	159	B/D	193	С
24.	С	58.	С	92	В	126	Α	160	Α	194	В
25.	В	59.	С	93	Α	127	В	161	All	195	С
26.	Α	60.	D	94	С	128	С	162	Α	196	C
27.	С	61.	Α	95	В	129	С	163	D	197	Α
28.	D	62.	В	96	В	130	Α	164	D	198	В
29.	В	63.	D	97	В	131	С	165	All	199	В
30.	Α	64.	В	98	D	132	D	166	С	200	C
31.	D	65.	С	99	С	133	В	167	В		
32.	В	66.	D	100	D	134	С	168	D		
33.	В	67.	С	101	C/B	135	Α	169	D		
34.	С	68.	А	102	Α	136	В	170	D		

PCB UG B- ANSWER KEY

Q.	Ans	Q.	Ans	Q.	Answe	Q.	Ans	Q.	Ans	Q.	Ans
No.		No.		No.	r	No.	wer	No.	wer	No.	wer
1.	D	35.	С	69.	D	103	A	137	В	171	D
2.	В	36.	C	70.	C	104	A	138	В	172	A
3.	D	37.	С	71.	C	105	C	139	All	173	C
4.	A	38.	В	72.	A	106	С	140	Α	174	С
5.	D	39.	С	73.	Α	107	В	141	All	175	В
6.	С	40	В	74.	All	108	С	142	В	176	Α
7.	A	41.	Α	75.	D	109	B/D	143	С	177	С
8.	C	42.	В	76.	Α	110	Α	144	В	178	D
9.	С	43.	Α	77.	В	111	All	145	С	179	В
10.	D	44.	С	78.	С	112	Α	146	С	180	Α
11.	Α	45.	В	79.	С	113	D	147	А	181	D
12.	В	46.	В	80.	А	114	D	148	В	182	В
13.	D	47.	В	81.	С	115	All	149	В	183	В
14.	В	48.	D	82.	D	116	С	150	С	184	С
15.	С	49.	С	83.	В	117	В	151	С	185	А
16.	D	50.	D	84.	С	118	D	152	В	186	D
17.	С	51.	C/B	85	Α	119	D	153	А	187	С
18.	Α	52.	Α	86	В	120	D	154	D	188	Α
19.	Α	53.	All	87	В	121	С	155	С	189	D
20.	D	54.	В	88	А	122	D	156	В	190	В
21.	В	55.	D	89	Α	123	D	157	А	191	С
22.	В	56.	В	90	Α	124	Α	158	D	192	D
23.	С	57.	С	91	С	125	С	159	А	193	Α
24.	D	58.	С	92	D	126	D	160	В	194	В
25.	D	59.	С	93	С	127	D	161	С	195	С
26.	Α	60.	В	94	D	128	В	162	D	196	Α
27.	С	61.	Α	95	В	129	D	163	А	197	С
28.	В	62.	В	96	All	130	Α	164	В	198	С
29.	A/B	63.	D	97	Α	131	Α	165	С	199	D
30.	С	64.	Α	98	Α	132	С	166	D	200	В
31.	В	65.	С	99	Α	133	D	167	А		
32.	D	66.	D	100	D	134	В	168	С		
33.	Α	67.	Α	101	С	135	С	169	А		
34.	Α	68.	Α	102	D	136	Α	170	В		

PCB UG C- ANSWER KEY

Q.	Ans	Q .	Ans	Q.	Ans	Q .	Ans	Q.	Ans	Q .	Ans
No.		No.		No.		No.		No.		No.	
1.	C/B	35.	Α	69.	D	103	Α	137	С	171	В
2.	Α	36.	В	70.	D	104	D	138	Α	172	В
3.	All	37.	В	71.	С	105	С	139	D	173	С
4.	В	38.	А	72.	D	106	В	140	В	174	D
5.	D	39.	А	73.	D	107	Α	141	С	175	D
6.	В	40	А	74.	А	108	D	142	D	176	Α
7.	С	41.	С	75.	С	109	Α	143	Α	177	С
8.	С	42.	D	76.	D	110	В	144	В	178	В
9.	С	43.	С	77.	D	111	С	145	С	179	A/B
10.	В	44.	D	78.	В	112	D	146	А	180	С
11.	Α	45.	В	79.	D	113	Α	147	С	181	В
12.	В	46.	All	80.	А	114	В	148	С	182	D
13.	D	47.	А	81.	А	115	С	149	D	183	Α
14.	Α	48.	А	82.	С	116	D	150	В	184	Α
15.	С	49.	А	83.	D	117	Α	151	D	185	С
16.	D	50.	D	84.	В	118	С	152	В	186	С
17.	Α	51.	С	85	С	119	Α	153	D	187	С
18.	Α	52.	D	86	А	120	В	154	А	188	В
19.	D	53.	А	87	В	121	D	155	D	189	С
20.	С	54.	А	88	В	122	Α	156	С	190	В
21.	С	55.	С	89	All	123	С	157	А	191	Α
22.	Α	56.	С	90	А	124	С	158	С	192	В
23.	Α	57.	В	91	All	125	В	159	С	193	Α
24.	All	58.	С	92	В	126	Α	160	D	194	С
25.	D	59.	B/D	93	С	127	С	161	А	195	В
26.	Α	60.	А	94	В	128	D	162	В	196	В
27.	В	61.	All	95	С	129	В	163	D	197	В
28.	С	62.	А	96	С	130	А	164	В	198	D
29.	С	63.	D	97	А	131	D	165	С	199	С
30.	Α	64.	D	98	В	132	В	166	D	200	D
31.	С	65.	All	99	В	133	В	167	С		
32.	D	66.	С	100	С	134	С	168	А		
33.	В	67.	В	101	С	135	Α	169	А		
34.	С	68.	D	102	В	136	D	170	D		

PCB UG D- ANSWER KEY

Q .	Ans	Q.	Ans	Q.	Answe	Q.	Ans	Q.	Ans	Q.	Ans
No.		No.		No.	r	No.	wer	No.	wer	No.	wer
1.	C	35.	С	69.	A	103	D	137	С	171	С
2.	D	36.	A	70.	В	104	A	138	В	172	Α
3.	Α	37.	В	71.	D	105	D	139	С	173	Α
4.	Α	38.	В	72.	A	106	С	140	В	174	All
5.	С	39.	All	73.	С	107	Α	141	Α	175	D
6.	C	40	А	74.	С	108	С	142	В	176	Α
7.	В	41.	All	75.	В	109	С	143	Α	177	В
8.	С	42.	В	76.	Α	110	D	144	С	178	С
9.	B/D	43.	С	77.	С	111	Α	145	В	179	С
10.	А	44.	В	78.	D	112	В	146	В	180	Α
11.	All	45.	С	79.	В	113	D	147	В	181	С
12.	Α	46.	С	80.	Α	114	В	148	D	182	D
13.	D	47.	А	81.	D	115	С	149	С	183	В
14.	D	48.	В	82.	В	116	D	150	D	184	С
15.	All	49.	В	83.	В	117	С	151	C/B	185	Α
16.	С	50.	С	84.	С	118	Α	152	А	186	В
17.	В	51.	С	85	А	119	Α	153	All	187	В
18.	D	52.	В	86	D	120	D	154	В	188	А
19.	D	53.	А	87	С	121	В	155	D	189	А
20.	D	54.	D	88	Α	122	В	156	В	190	А
21.	С	55.	С	89	D	123	С	157	С	191	С
22.	D	56.	В	90	В	124	D	158	С	192	D
23.	D	57.	А	91	С	125	D	159	С	193	С
24.	А	58.	D	92	D	126	А	160	В	194	D
25.	С	59.	А	93	А	127	С	161	А	195	В
26.	D	60.	В	94	В	128	В	162	В	196	All
27.	D	61.	С	95	С	129	A/B	163	D	197	А
28.	В	62.	D	96	A	130	С	164	А	198	А
29.	D	63.	А	97	С	131	B	165	С	199	А
30.	А	64.	В	98	C	132	D	166	D	200	D
31.	Ā	65.	C	99	D	133	A	167	A		
32.	C	66.	D	100	B	134	A	168	A		
33.	D	67.	A	101	D	135	C	169	D		
34.	В	68.	С	102	В	136	C	170	С		

PCM UG A Answer key

Q.	An	Q.	Ans	Q .	Answe	Q.	Ans	Q.	Ans	Q.	Ans
No.	S	No.		No.	r	No.	wer	No.	wer	No.	wer
1.	C/B	35.	Α	69.	D	103	Α	137	Α	171	D
2.	Α	36.	В	70.	D	104	Α	138	В	172	D
3.	All	37.	В	71.	С	105	Α	139	D	173	В
4.	В	38.	Α	72.	D	106	С	140	А	174	A
5.	D	39.	Α	73.	D	107	С	141	А	175	D
6.	В	40	Α	74.	Α	108	Α	142	В	176	В
7.	С	41.	С	75.	С	109	D	143	В	177	D
8.	С	42.	D	76.	D	110	В	144	D	178	В
9.	С	43.	С	77.	D	111	Α	145	В	179	В
10.	В	44.	D	78.	В	112	Α	146	A/B	180	В
11.	Α	45.	В	79.	D	113	В	147	А	181	Α
12.	В	46.	All	80.	A	114	D	148	В	182	Α
13.	D	47.	Α	81.	Α	115	С	149	Α	183	Α
14.	Α	48.	А	82.	С	116	Α	150	С	184	C
15.	С	49.	А	83.	D	117	D	151	D	185	В
16.	D	50.	D	84.	В	118	С	152	А	186	D
17.	Α	51.	С	85	С	119	В	153	С	187	C
18.	Α	52.	D	86	Α	120	С	154	В	188	Α
19.	D	53.	Α	87	В	121	D	155	D	189	В
20.	С	54.	Α	88	В	122	D	156	С	190	All
21.	С	55.	С	89	All	123	Α	157	Α	191	В
22.	Α	56.	С	90	Α	124	Α	158	D	192	C
23.	Α	57.	В	91	All	125	В	159	В	193	D
24.	All	58.	С	92	В	126	В	160	В	194	All
25.	D	59.	B/D	93	С	127	С	161	С	195	C
26.	А	60.	Α	94	В	128	В	162	С	196	C
27.	В	61.	All	95	С	129	D	163	D	197	В
28.	С	62.	Α	96	С	130	В	164	D	198	В
29.	С	63.	D	97	Α	131	All	165	А	199	Α
30.	Α	64.	D	98	В	132	D	166	All	200	C
31.	С	65.	All	99	В	133	С	167	D		
32.	D	66.	С	100	С	134	С	168	С		
33.	В	67.	В	101	Α	135	В	169	Α		
34.	С	68.	D	102	В	136	В	170	С		

PCM UG B Answer key

Q.	Ans	Q.	Ans	Q.	Answe	Q.	Ans	Q.	Ans	Q.	Ans
NO.	C	NO.	0	No.	r D	NO.	wer	NO.	wer	NO.	wer
1.		<u> </u>		<u>69.</u>	B	103		13/	0	1/1	0
2.		36.	A	/0.		104	B	138	A	172	A
3.	A	37.	B	/1.	D	105	D	139	B	1/3	A 11
4.	A	38.	B	72.	D	106	C	140	All	174	All
5.	C	39.	All	73.	A	107	A	141	B	175	D
6.	C	40	A	74.	A	108	D	142	C	176	A
7.	В	41.	All	75.	В	109	В	143	D	177	В
8.	C	42.	В	76.	В	110	В	144	All	178	С
9.	B/D	43.	С	77.	C	111	C	145	С	179	С
10.	Α	44.	В	78.	В	112	С	146	С	180	Α
11.	All	45.	С	79.	D	113	D	147	В	181	С
12.	Α	46.	С	80.	В	114	D	148	В	182	D
13.	D	47.	А	81.	All	115	Α	149	А	183	В
14.	D	48.	В	82.	D	116	All	150	С	184	С
15.	All	49.	В	83.	С	117	D	151	C/B	185	Α
16.	С	50.	С	84.	С	118	С	152	А	186	В
17.	В	51.	А	85	В	119	Α	153	All	187	В
18.	D	52.	В	86	В	120	С	154	В	188	А
19.	D	53.	А	87	А	121	D	155	D	189	А
20.	D	54.	А	88	В	122	D	156	В	190	А
21.	С	55.	А	89	D	123	В	157	С	191	С
22.	D	56.	С	90	Α	124	А	158	С	192	D
23	D	57	C	91	A	125	D	159	C	193	C
24	A	58	A	92	B	126	B	160	B	194	D
25.	C	59.	D	93	B	127	D	161	A	195	B
26	D	60	B	94	D	128	B	162	B	196	All
27	D	61	A	95	B	129	B	163	D	197	A
28	B	62	A	96	A/B	130	B	164	A	198	A
20.	D	63	B	97	A	131	A	165	C	199	A
30		64	<u>р</u>	98	R	137	Δ	166		200	D
31	A	65	C	99	A	133	A	167	A	200	D
32	C	66	Δ	100	C	13/	C	168	Δ		
32.		67		101		135	R	160			
34	B	68	C D	102	Δ	136	<u>d</u>	170	C	<u> </u>	<u> </u>

PCM UG C Answer key

Q.	An	Q.	Ans	Q.	Answe	Q.	Ans	Q.	Ans	Q.	Ans
No.	S	No.		No.	r	No.	wer	No.	wer	No.	wer
1.	Α	35.	В	69.	A	103	All	137	В	171	C
2.	В	36.	В	70.	С	104	В	138	Α	172	D
3.	Α	37.	Α	71.	D	105	D	139	Α	173	D
4.	Α	38.	В	72.	D	106	В	140	Α	174	Α
5.	Α	39.	D	73.	В	107	С	141	С	175	C
6.	С	40	Α	74.	A	108	С	142	D	176	D
7.	С	41.	Α	75.	D	109	С	143	С	177	D
8.	Α	42.	В	76.	В	110	В	144	D	178	В
9.	D	43.	В	77.	D	111	Α	145	В	179	D
10.	В	44.	D	78.	В	112	В	146	All	180	Α
11.	Α	45.	В	79.	В	113	D	147	Α	181	Α
12.	Α	46.	A/B	80.	В	114	Α	148	Α	182	С
13.	В	47.	А	81.	Α	115	С	149	Α	183	D
14.	D	48.	В	82.	Α	116	D	150	D	184	В
15.	С	49.	А	83.	Α	117	Α	151	С	185	С
16.	Α	50.	С	84.	С	118	Α	152	D	186	Α
17.	D	51.	D	85	В	119	D	153	Α	187	В
18.	С	52.	А	86	D	120	С	154	Α	188	В
19.	В	53.	С	87	С	121	С	155	С	189	All
20.	С	54.	В	88	Α	122	Α	156	С	190	Α
21.	D	55.	D	89	В	123	Α	157	В	191	All
22.	D	56.	С	90	All	124	All	158	С	192	В
23.	Α	57.	А	91	В	125	D	159	B/D	193	С
24.	Α	58.	D	92	С	126	Α	160	Α	194	В
25.	В	59.	В	93	D	127	В	161	All	195	С
26.	В	60.	В	94	All	128	С	162	Α	196	С
27.	С	61.	С	95	С	129	С	163	D	197	Α
28.	В	62.	С	96	С	130	Α	164	D	198	В
29.	D	63.	D	97	В	131	С	165	All	199	В
30.	В	64.	D	98	В	132	D	166	С	200	C
31.	All	65.	Α	99	Α	133	В	167	В		
32.	D	66.	All	100	С	134	С	168	D		
33.	С	67.	D	101	C/B	135	Α	169	D		
34.	С	68.	С	102	Α	136	В	170	D		

PCM UG D Answer key

Q.	An	Q.	Ans	Q.	Answe	Q.	Ans	Q.	Ans	Q.	Ans
No.	S	No.		No.	r	No.	wer	No.	wer	No.	wer
1.	D	35.	В	69.	D	103	A	137	В	171	D
2.	Α	36.	D	70.	С	104	Α	138	В	172	D
3.	С	37.	С	71.	С	105	С	139	All	173	Α
4.	В	38.	Α	72.	Α	106	С	140	Α	174	Α
5.	D	39.	В	73.	Α	107	В	141	All	175	В
6.	С	40	All	74.	All	108	С	142	В	176	В
7.	Α	41.	В	75.	D	109	B/D	143	С	177	С
8.	D	42.	С	76.	Α	110	Α	144	В	178	В
9.	В	43.	D	77.	В	111	All	145	С	179	D
10.	В	44.	All	78.	С	112	Α	146	С	180	В
11.	С	45.	С	79.	С	113	D	147	Α	181	All
12.	С	46.	С	80.	Α	114	D	148	В	182	D
13.	D	47.	В	81.	С	115	All	149	В	183	С
14.	D	48.	В	82.	D	116	С	150	С	184	С
15.	Α	49.	А	83.	В	117	В	151	Α	185	В
16.	All	50.	С	84.	С	118	D	152	В	186	В
17.	D	51.	C/B	85	Α	119	D	153	Α	187	Α
18.	С	52.	А	86	В	120	D	154	Α	188	В
19.	Α	53.	All	87	В	121	С	155	Α	189	D
20.	C	54.	В	88	Α	122	D	156	С	190	Α
21.	D	55.	D	89	Α	123	D	157	С	191	Α
22.	D	56.	В	90	Α	124	Α	158	Α	192	В
23.	В	57.	С	91	С	125	С	159	D	193	В
24.	Α	58.	С	92	D	126	D	160	В	194	D
25.	D	59.	С	93	С	127	D	161	Α	195	В
26.	В	60.	В	94	D	128	В	162	Α	196	A/B
27.	D	61.	А	95	В	129	D	163	В	197	Α
28.	В	62.	В	96	All	130	Α	164	D	198	В
29.	В	63.	D	97	Α	131	Α	165	С	199	Α
30.	В	64.	А	98	Α	132	С	166	Α	200	С
31.	Α	65.	С	99	Α	133	D	167	D		
32.	Α	66.	D	100	D	134	В	168	С		
33.	Α	67.	А	101	С	135	С	169	В		
34.	С	68.	А	102	D	136	Α	170	С		

PCA UG A Answer key

Q.	An	Q.	Ans	Q.	Answe	Q.	Ans	Q .	Ans	Q.	Ans
No.	S	No.		No.	r	No.	wer	No.	wer	No.	wer
1.	C/B	35.	Α	69.	D	103	С	137	Α	171	Α
2.	Α	36.	В	70.	D	104	Α	138	В	172	С
3.	All	37.	В	71.	С	105	В	139	Α	173	Α
4.	В	38.	А	72.	D	106	В	140	D	174	С
5.	D	39.	А	73.	D	107	Α	141	D	175	В
6.	В	40	А	74.	Α	108	В	142	D	176	С
7.	С	41.	С	75.	С	109	В	143	В	177	В
8.	С	42.	D	76.	D	110	С	144	В	178	В
9.	С	43.	С	77.	D	111	А	145	С	179	С
10.	В	44.	D	78.	В	112	В	146	С	180	С
11.	Α	45.	В	79.	D	113	В	147	С	181	А
12.	В	46.	All	80.	Α	114	Α	148	D	182	В
13.	D	47.	А	81.	А	115	D	149	D	183	D
14.	Α	48.	А	82.	С	116	D	150	С	184	Α
15.	С	49.	А	83.	D	117	С	151	В	185	С
16.	D	50.	D	84.	В	118	В	152	В	186	А
17.	Α	51.	С	85	С	119	Α	153	С	187	D
18.	Α	52.	D	86	Α	120	В	154	В	188	Α
19.	D	53.	А	87	В	121	В	155	С	189	D
20.	С	54.	А	88	В	122	В	156	В	190	Α
21.	С	55.	С	89	All	123	Α	157	D	191	С
22.	Α	56.	С	90	Α	124	С	158	С	192	В
23.	Α	57.	В	91	All	125	С	159	В	193	С
24.	All	58.	С	92	В	126	Α	160	С	194	В
25.	D	59.	B/D	93	С	127	В	161	С	195	В
26.	Α	60.	А	94	В	128	D	162	В	196	B/D
27.	В	61.	All	95	С	129	В	163	В	197	В
28.	С	62.	А	96	С	130	В	164	Α	198	В
29.	С	63.	D	97	А	131	D	165	С	199	А
30.	Α	64.	D	98	В	132	Α	166	С	200	В
31.	С	65.	All	99	В	133	Α	167	Α		
32.	D	66.	С	100	С	134	В	168	В		
33.	В	67.	В	101	D	135	Α	169	В		
34.	С	68.	D	102	С	136	С	170	D		

PCA UG B Answer key

Q .	Ans	Q.	Ans	Q.	Answe	Q.	Ans	Q.	Ans	Q.	Ans
No.		No.		No.	r	No.	wer	No.	wer	No.	wer
1.	С	35.	С	69.	Α	103	С	137	D	171	С
2.	D	36.	Α	70.	В	104	В	138	А	172	Α
3.	Α	37.	В	71.	В	105	С	139	D	173	Α
4.	Α	38.	В	72.	В	106	В	140	А	174	All
5.	С	39.	All	73.	Α	107	D	141	С	175	D
6.	С	40	Α	74.	С	108	С	142	В	176	Α
7.	В	41.	All	75.	С	109	В	143	С	177	В
8.	С	42.	В	76.	Α	110	С	144	В	178	С
9.	B/D	43.	С	77.	В	111	С	145	В	179	С
10.	Α	44.	В	78.	D	112	В	146	B/D	180	Α
11.	All	45.	С	79.	В	113	В	147	В	181	С
12.	Α	46.	С	80.	В	114	Α	148	В	182	D
13.	D	47.	А	81.	D	115	С	149	А	183	В
14.	D	48.	В	82.	А	116	С	150	В	184	С
15.	All	49.	В	83.	А	117	Α	151	C/B	185	Α
16.	С	50.	С	84.	В	118	В	152	А	186	В
17.	В	51.	D	85	А	119	В	153	All	187	В
18.	D	52.	С	86	С	120	D	154	В	188	Α
19.	D	53.	С	87	Α	121	Α	155	D	189	Α
20.	D	54.	Α	88	В	122	С	156	В	190	Α
21.	С	55.	В	89	Α	123	Α	157	С	191	С
22.	D	56.	В	90	D	124	С	158	С	192	D
23.	D	57.	А	91	D	125	В	159	С	193	С
24.	Α	58.	В	92	D	126	С	160	В	194	D
25.	С	59.	В	93	В	127	В	161	Α	195	В
26.	D	60.	С	94	В	128	В	162	В	196	All
27.	D	61.	А	95	С	129	С	163	D	197	Α
28.	В	62.	В	96	С	130	С	164	А	198	Α
29.	D	63.	В	97	С	131	Α	165	С	199	Α
30.	Α	64.	А	98	D	132	В	166	D	200	D
31.	Α	65.	D	99	D	133	D	167	А		
32.	С	66.	D	100	С	134	Α	168	А		
33.	D	67.	С	101	В	135	С	169	D		
34.	В	68.	В	102	В	136	А	170	С		

PCA UG C Answer key

Q.	An	Q.	Ans	Q.	Answe	Q.	Ans	Q.	Ans	Q.	Ans
No.	S	No.		No.	r	No.	wer	No.	wer	No.	wer
1.	D	35.	Α	69.	В	103	All	137	В	171	C
2.	С	36.	С	70.	D	104	В	138	Α	172	D
3.	С	37.	А	71.	Α	105	D	139	Α	173	D
4.	Α	38.	В	72.	С	106	В	140	Α	174	Α
5.	В	39.	А	73.	Α	107	C	141	С	175	С
6.	В	40	D	74.	С	108	C	142	D	176	D
7.	Α	41.	D	75.	В	109	C	143	С	177	D
8.	В	42.	D	76.	С	110	В	144	D	178	В
9.	В	43.	В	77.	В	111	Α	145	В	179	D
10.	С	44.	В	78.	В	112	В	146	All	180	Α
11.	Α	45.	С	79.	С	113	D	147	Α	181	Α
12.	В	46.	С	80.	С	114	Α	148	А	182	С
13.	В	47.	С	81.	Α	115	С	149	Α	183	D
14.	Α	48.	D	82.	В	116	D	150	D	184	В
15.	D	49.	D	83.	D	117	Α	151	С	185	С
16.	D	50.	С	84.	Α	118	Α	152	D	186	Α
17.	С	51.	В	85	С	119	D	153	Α	187	В
18.	В	52.	В	86	Α	120	С	154	Α	188	В
19.	Α	53.	С	87	D	121	С	155	С	189	All
20.	В	54.	В	88	Α	122	Α	156	С	190	Α
21.	В	55.	С	89	D	123	Α	157	В	191	All
22.	В	56.	В	90	Α	124	All	158	С	192	В
23.	Α	57.	D	91	С	125	D	159	B/D	193	С
24.	С	58.	С	92	В	126	Α	160	Α	194	В
25.	С	59.	В	93	С	127	В	161	All	195	С
26.	Α	60.	С	94	В	128	C	162	Α	196	С
27.	В	61.	С	95	В	129	С	163	D	197	Α
28.	D	62.	В	96	B/D	130	A	164	D	198	В
29.	В	63.	В	97	В	131	С	165	All	199	В
30.	В	64.	А	98	В	132	D	166	С	200	С
31.	D	65.	С	99	А	133	В	167	В		
32.	Α	66.	С	100	В	134	С	168	D		
33.	Α	67.	Α	101	C/B	135	Α	169	D		
34.	В	68.	В	102	А	136	В	170	D		

PCA UG D Answer key

Q.	An	Q .	Ans	Q.	Answe	Q.	Ans	Q .	Ans	Q.	Ans
No.	S	No.		No.	r	No.	wer	No.	wer	No.	wer
1.	В	35.	С	69.	D	103	Α	137	В	171	В
2.	В	36.	Α	70.	С	104	Α	138	В	172	В
3.	С	37.	D	71.	С	105	С	139	All	173	Α
4.	В	38.	А	72.	Α	106	С	140	Α	174	С
5.	С	39.	D	73.	Α	107	В	141	All	175	С
6.	В	40	А	74.	All	108	С	142	В	176	Α
7.	D	41.	С	75.	D	109	B/D	143	С	177	В
8.	С	42.	В	76.	Α	110	Α	144	В	178	D
9.	В	43.	С	77.	В	111	All	145	С	179	В
10.	С	44.	В	78.	С	112	Α	146	С	180	В
11.	С	45.	В	79.	С	113	D	147	Α	181	D
12.	В	46.	B/D	80.	Α	114	D	148	В	182	А
13.	В	47.	В	81.	С	115	All	149	В	183	Α
14.	Α	48.	В	82.	D	116	С	150	С	184	В
15.	С	49.	А	83.	В	117	В	151	D	185	Α
16.	С	50.	В	84.	С	118	D	152	С	186	С
17.	Α	51.	C/B	85	А	119	D	153	С	187	Α
18.	В	52.	А	86	В	120	D	154	Α	188	В
19.	В	53.	All	87	В	121	С	155	В	189	Α
20.	D	54.	В	88	Α	122	D	156	В	190	D
21.	Α	55.	D	89	A	123	D	157	Α	191	D
22.	С	56.	В	90	Α	124	Α	158	В	192	D
23.	Α	57.	С	91	С	125	С	159	В	193	В
24.	С	58.	С	92	D	126	D	160	С	194	В
25.	В	59.	С	93	С	127	D	161	Α	195	С
26.	С	60.	В	94	D	128	В	162	В	196	С
27.	В	61.	А	95	В	129	D	163	В	197	С
28.	В	62.	В	96	All	130	Α	164	Α	198	D
29.	С	63.	D	97	Α	131	Α	165	D	199	D
30.	С	64.	А	98	Α	132	С	166	D	200	С
31.	Α	65.	С	99	Α	133	D	167	С		
32.	В	66.	D	100	D	134	В	168	В		
33.	D	67.	А	101	С	135	С	169	Α		
34.	Α	68.	А	102	D	136	Α	170	В		